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ABSTRACT 

The PERT distribution is one of the most popular probability continuous distributions with applications to real 

life data. In this paper some structural properties of this distribution such as  Moments, moment generating 

function, Characteristics function, Cumulative distribution function, Survival function, Hazard function, and also 

derive the Information matrix. The plots of the Probability density function, cumulative distribution function, 

Survival function and hazard function of the PERT distribution were constructed for ease of understanding of 

its shapes under different parameter combinations.  

Keywords: PERT Distribution, Moment Generating Function, Survival Function, Hazard Function, Information 

Matrix.          

I. INTRODUCTION 

The PERT distribution is widely used in risk analysis to represent the uncertainty of  the worth of some 

quantity where one is counting on subjective estimates, because the three parameters defining the 

distribution are intuitive to the estimator. In PERT analysis the activity-time distribution is assumed to 

be a beta distribution, and therefore the mean and variance of the activity time are estimated on the 

idea of the 'pessimistic', 'most likely' and 'optimistic' completion times, which are subjectively 

determined by an analyst. In this paper, on the idea of the study of the PERT assumptions, we present an 

improvement of those estimates. It is also shown that, by means of additional reasonable assumptions, 

the activity-time distribution in PERT analysis could also be essentially simplified. 

PERT helps within the management of the projects by forming a network diagram. The analysis of the 

network diagram in PERT helps in scheduling the activities associated with the project. Furthermore, 

using PERT forces the managers involved in the construction industry to organize and quantify project 

information and allows them to present a graphic display of the project.  

In addition, this technique helps in identifying the critical activities involved in the project and in keeping  

check on those activities that need to be closely monitored.  Especially in the case of construction 

projects, the PERT method would allow the management to have clear views regarding the utilization of 

processes to maximize the usage of available resources. PERT serves as a key tool to determine the cost, 

material, time, and requirement of capital related to a specific project.  

In probability and statistics, the PERT distribution may be a family of continuous probability 

distributions defined by the minimum (a), presumably (b) and maximum (c) values that a variable can 

take. The pdf of PERT Distribution is 

Where    

ac

bc

ac

bac

ac

ab

ac

acb





















)(4
1

45

)(4
1

54



  

)1(

,0

))(,(

)()(

)( 1

11














 



otherwise

cxaif
ac

xcax

xf 







                                                                                                                     e-ISSN: 2582-5208 
International Research Journal  of  Modernization in Engineering  Technology  and  Science 

( Peer-Reviewed, Open Access, Fully Refereed International Journal ) 

Volume:03/Issue:10/October-2021             Impact Factor- 6.752                                     www.irjmets.com       

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [908] 

 

CHART-1.1: Probability Density Function of PERT Distribution (a,b,c) 

MOMENTS OF PERT DISTRIBUTION
 

The Probability density function of PERT Distribution is 
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The movements of PERT distribution are given by
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  Putting r = 1, in equation (2), we get 
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Which is the mean μ of the PER distribution Putting r=2, in the question (2), we get 
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  Putting r = 3, in the question (2), we get  
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MOMENT GENERATING FUNCTION  OF PERT DISTRIBUTION 

Hyper geometric function: The Poehhammer symbol (α)r  is defined by  
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The general Hypergeomentric function is 
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Which is also denoted by M(α, β, x) and is called confluent Hypergeomentric function 

Result:  
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Which is the moment generating function of PERT Distribution 

CHARACTERISTIC FUNCTION OF PERT DISTRIBUTION 
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CUMULATIVE DISTRIBUTION FUNCTION OF PERT DISTRIBUTION (CDF): 

The CDF of PERT Distribution is  
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CHART-1.2: Cumulative Distribution Function of PERT Distribution (a,b,c) 

SURVIVAL FUNCTION OF THE PERT DISTRIBUTION:  

The Survival function = 1-CDF
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CHART-1.3: Survival Function of PERT Distribution (a,b,c) 

HAZARD FUNCTION OF THE PERT DISTRIBUTION:  

The Hazard function of the PERT Distribution is 
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CHART-1.4: Hazard Function of PERT Distribution (a,b,c) 

LIKELIHOOD ESTIMATION:  

Assume that a random samples x1, x2, x3. ……..xn has been collected from a random variable X which is follows 

the four parameters of PERT Distribution is 
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        Where α > 0,  β > 0   and   -∞ < a,   c > 0   

Taking logarithms on both sides form the above likelihood function for a sample of size n for this distribution is 
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Differentiating (11) partially w.r.t.  ‘a’ and equating  to ‘0’ as follows 
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Again differentiating (11) partially w.r.t.  ‘c’  and equating to ‘0’, we get 
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Now Differentiating (11) partially w.r.t  ‘α’ and equating to ‘0’, we get 
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  Again Differentiating (13) partially w.r.t. ‘β’ and equating to ‘0’, we get 
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INFORMATION MATRIX: The solution of the four equations (12), (13), (14) and (15) gives the maximum 

likelihood estimator for a, c, α and β. Now we take second partially derivatives of L w.r.t. a, c, α and β, we get.  

The solution of the four equations gives maximum Likelihood. 

Estimation for a,b,α, and β. The asymptotic variances and covariance of these ML estimates can be obtained 

from the information matrix, if certain regularity conditions are satisfied, as will be discussed. Taking the 

various second partial derivatives of L with respect to the parameters gives 
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Where ϕ'(x) is the trigamma function. The information matrix with elements that are negative of expected 

values of second partial derivative of L is 
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II. CONCLUSION 

The PERT distribution produces a bell-shaped curve that is nearly normal. The PERT distribution with 

unknown end points was investigated as regard maximum likelihood estimation of its parameters. The 

maximum likelihood equations are derived along with the information matrix. With some assumptions, the 

information matrix I can be used to establish a minimum variance bound for an unbiased estimator by means of 

Cramer-Rao inequality. Also, under suitable regularity conditions, consistency and asymptotic normality and 

efficiency can be claimed for the ML estimates. Then the diagonal elements of I-I are the asymptotic variances of 

the parameter estimates; however, they turn out to be quite a task to obtain in closed form. Consequently I was 

inverted numerically for specific values of a, c, b, α, and β. 
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