
 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:03/Issue:06/June-2021 Impact Factor- 5.354 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [2960]

SEMANTIC SEARCH ENGINE USING UNIVERSAL SENTENCE ENCODER

Thejeswee. N*1, Dr. V. Arun*2
*1UG Student, Department Of Computer Science And Engineering, Madanapalle Institute Of Technology &

Science, Angallu (V), Madanapalle-517325, Chittoor District, Andhra Pradesh, India.

*2Assistant Professor, Department Of Computer Science And Engineering, Madanapalle Institute Of Technology

& Science, Angallu (V), Madanapalle-517325, Chittoor District, Andhra Pradesh, India.

ABSTRACT

The main aim of this research is to design an efficient and low time consumption by utilizing a deep learning,

advanced NLP techniques to reduce the complexity of searching. It also uses Similarity metrics like cosine

similarity, set difference similarity that improves the searching process. Our main aim is to design this search

engine that provides significant links with less time complexity. Users don’t have to search multiple times with

different words in order to get the actual results they want. This proposed search engine provides results based

on the semantic meaning. Since it uses a Universal Sentence Encoder that provides semantic search [1,2],

retrieval, and text clustering and it provides a balance of accuracy and inference speed [3]. We can use this

work in any type of marketing and business to perform text classification, smart-reply [4] or paraphrase

detection.

Keywords: Deep Learning, NLP, Universal Sentence Encoder, Vectors, Embeddings, Semantic Search, Count-

Vectorizer, TF-IDF, Cosine Similarity.

I. INTRODUCTION

The Search engine using “Universal Sentence Encoder” is being developed to assist Search Engine in everyday

queries in terms of reduced time spent while searching. A semantic Search engine understand the meanings

hidden in retrieved user’s queries. In simple terms, it is a text search where the user can have a more than

English type search. Many Search engines have more latency which leads to more time in retrieving the data.

Usually, Universal Sentence Encoder uses BERT model [5] which has more space & time complexity. The

proposed model attempts to design an efficient and low time consumption by utilizing a deep learning,

advanced NLP techniques to reduce the complexity of searching. It also uses Similarity metrics like cosine

similarity that improves the searching process by: (I)A Deeper understanding of user intent. (II)A more Natural

language search. (III) Understanding all the data and their context maximizes the possibility of users getting the

best search experience possible. The Embeddings designed can be used to solve multiple tasks and based on the

mistakes, it can be updated. As, we use the embeddings on multiple generic tasks, it discards noise and captures

important features. It consists of components like Tokenization, Encoder, Multi-task Learning, Inference. Since

it uses a Universal Sentence Encoder that provides semantic search, retrieval, and text clustering and it

provides a balance of accuracy and inference speed. Search Engine is used to enable the user to locate & learn

information on the web. This is one of the applications of deep learning. In which the users enter a query and

the model does some pre-processing, cleaning, and converts into vectors, numerical vectors which is then

stored as 512-dimensional vector and used to find the cosine similarity [9] between the user’s searched query

and the one’s that is already present. Now, most similar results are displayed. The querying is done in on

semantic meaning [8,9]. By doing all this we are able to maintain the application without any bugs and errors.

We were able to retrieve the results in less than a second along with more accuracy in getting the similar and

significant links based on semantic search of the user’s query.

II. LITERATURE SURVEY

Universal Sentence Encoder [11] is a model from TensorFlow hub that encodes textual data into high

dimensional vectors known as embeddings. Choosing a right Optimizer and loss function makes the model

performance better in short period of time. The computational power to train the deep learning models is high

and we are balancing with simple model architectures. The respective pre-trained models should be

downloaded and all the packages should be installed. Once we get our required 512-dimensional vector, we use

this vector to find the cosine similarity between the queries and outputs the most similar links. So, it provides

the similar results in less time and more accuracy. Universal Sentence Encoder (USE) concept is used by Daniel

Cer et al. [7] for similar work. Also, according to Veysel Kocaman [10], a senior data scientist has told in his

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:03/Issue:06/June-2021 Impact Factor- 5.354 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [2961]

article that USE model gives more accuracy when compared to other models like count-vectorizer, TF-IDF,

BERT model.

III. METHODOLOGY

Implementation of modules

The Key functions that are to be noticed, processed and implemented are:

1. Accessing and reading “Python Questions from Stack Overflow” dataset.

2. Data loading & preprocessing.

3. Processing the Text data, cleaning.

4. Developing Universal Sentence Encoder / loading the model from TensorFlow Hub.

5. Embedding Text into Vectors (i.e., 512-dimension).

6. Calculate the cosine similarity.

7. Obtain results that are similar to search query.

8. Training the model with training dataset.

9. Evaluate the trained model with test dataset.

10. Creating a web-app with good user interface using stream lit.

In order to achieve this project, we used Universal Sentence Encoder, a model from TensorFlow hub that

encodes textual data into high dimensional vectors known as embeddings. Choosing a right Optimizer and loss

function makes the model performance better in short period of time. The computational power to train the

deep learning models is high and we are balancing with simple model architectures. The respective pre-trained

models should be downloaded and all the packages should be installed. Universal Sentence Encoder performs

tokenization i.e., the sentence is converted to lowercase & are tokenized. These tokens are then passed into an

Encoder that encodes sentences into 512- dimensions embedding, based on the trade-offs in accuracy vs

inference this model chooses different architecture like Transformer Encoder or Deep Averaging Network

(DAN) [6]. Once we get our required 512-dimensional vector, we use this vector to find the cosine similarity

between the queries and outputs the most similar links. So, it provides the similar results in less time and more

accuracy.

Firstly, we should input the dataset “Python Questions from stack overflow” from Kaggle, this dataset contains

3 tables – questions, answers, tags

Figure 3.1: Training Dataset

After the datset is loaded and preprocessed using nlp techniques, we have all the data in required form , we can

then load the model “universal Sentence Encoder” from tensor flow hub . This coverts the user input into 512-

dimensional vector. This is used to find the cosine similarity between the input and existing queries. Later, this

model ouputs the results with most similar sentences. All this happens in less than a second – 0.41 sec. This

model can now be used to develop search engine just by adding the front-end using Stream Lit.

Psuedo code:

Import required packages

load model

module_url = "https://tfhub.dev/google/universal-sentence-encoder/4"

model = hub.load(module_url)

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:03/Issue:06/June-2021 Impact Factor- 5.354 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [2962]

print ("module %s loaded" % module_url)

Calculate Cosine similarity

s=np.dot(item,embed.T)

norm_a=np.linalg.norm(embed,axis=1)

norm_a=norm_a*np.linalg.norm(item)

#Print results

Figure 3.2: Results after training the model USE

Figure 3.3: Home page for search engine

Figure 3.4: Output of search query

IV. RESULTS AND DISCUSSION

In this section, we compared the performance of existing models of search engine like count-vectorizer, TF-IDF

based on the time criteria.

Using NLP Model - Count vectorizer for word Representation

We import the Count Vectorizer from sklearn, this creates vector of dimensions that is very large. This model

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:03/Issue:06/June-2021 Impact Factor- 5.354 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [2963]

doesn’t give any semantic information that leads to more trials to search for correct data/ information on web.

This model takes more time to compute results also the accuracy is not up to the mark.

 Pseudo code:

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer()

Calculate cosine similarity

s=np.dot(item,vectors.T)

norm_a=np.linalg.norm(vectors,axis=1)

norm_a=norm_a*np.linalg.norm(item)

Print the results

This model takes nearly 14.14 seconds to compute the results which is very high when compared with

proposed model Universal sentence encoder.

Figure 4.1: Results after training the model count-vectorizer

Using TF-IDF for word representation

We import the Count Vectorizer from sklearn, this creates vector of dimensions that is very large and based on

frequency of the occurrence of the word. This model gives the relevance of words in the user’s input. This

model takes more time to compute results when compared with USE model.

Pseudo code:

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer()

#Calculate cosine similarity

s=np.dot(item,vectors.T)

norm_a=np.linalg.norm(vectors,axis=1)

norm_a=norm_a*np.linalg.norm(item)

#Print results

This model takes nearly 1.54 seconds to compute the results which is very high when compared with proposed

model Universal sentence encoder.

Figure 4.2: Results after training the model TF-ID

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:03/Issue:06/June-2021 Impact Factor- 5.354 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [2964]

Model performance comparison

Figure 4.3: Comparison of models based on time taken to produce results

 Figure 4.4: Bar plot of models based on time taken

Hence the proposed model is easy to use, with low-computational power and does not require any special

training. A user can simply search the queries on the web-based application and due its semantic search it

makes easier to find the required similar results in less than a second. When we compare this with other

existing models it proves that universal sentence encoder provides results in less time (0.41 seconds) also, the

resultant links are much similar and accurate to the search query. As a whole, the system is just simplified and

scalable. Due to the use of NLP and deep learning models this is well trained model that gives accurate results

in less time. While validating the model with test data the results were accurate and well-defined with semantic

meaning.

V. CONCLUSION

The conclusion of this work is the comparative result of semantic search with less computational time and high

accuracy. Hence from the above proposed method we have designed a search engine using Universal Sentence

Encoder that is capable to produce results in less time with more accuracy. The proposed model was designed

with encoder architecture. Universal Sentence Encoder is a model from TensorFlow hub that encodes textual

data into high dimensional vectors known as embeddings, based on the trade-offs in accuracy vs inference this

model chooses different architecture like Transformer Encoder or Deep Averaging Network (DAN). It goes

through multi-task learning and adds the semantic meaning to the query. Once the model is trained then we can

use for semantic searches, paraphrase detection, smart-reply, text classification. Once we get our required 512-

dimensional vector, we use this vector to find the cosine similarity between the queries and outputs the most

similar links. So, it provides the similar results in less time and more accuracy. The model is fully capable of

being trained by using the

stochastic gradient descent that makes the training process easier. The experimental evaluations indicate that

the proposed model is able to generate more accurate results automatically.

The proposed model attempts to design an efficient and low time consumption by utilizing a deep learning,

advanced NLP techniques to reduce the complexity of searching. We can achieve more than 90% validation

accuracy in seconds.

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:03/Issue:06/June-2021 Impact Factor- 5.354 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [2965]

VI. REFERENCES

[1] Si, S., Zheng, W., Zhou, L., Zhang, M.: Sentence similarity computation in question answering robot.

IOP Conf. Ser. J. Phys. Conf. Ser. 1237, 022093 (2019)Google Scholar

[2] Jeon, J., Bruce Croft, W., Lee, J.H.: Finding semantically similar questions based on their answers

(Copyright is held by the author/owner. SIGIR’05, August 15–19, 2005, Salvador, Brazil)Google

Scholar

[3] Alexis Conneau et al., “Supervised Learning of Universal Sentence Representations from Natural

Language Inference Data”

[4] Matthew Henderson et al., “Efficient Natural Language Response Suggestion for Smart Reply”

[5] Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In:

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.

Association for Computational Linguistics (2019). https://arxiv.org/abs/1908.10084

[6] https://amitness.com/2020/06/universal-sentence-encoder/.

[7] Daniel Cer et al., “Universal Sentence Encoder”

[8] Yinfei Yang et al., “Learning Semantic Textual Similarity from Conversations”

[9] Google AI Blog, “Advances in Semantic Textual Similarity”

[10] https://towardsdatascience.com/text-classification-in-spark-nlp-with-bert-and-universal-sentence-

encoders-e644d618ca32

[11] Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

https://scholar.google.com/scholar?q=Si%2C%20S.%2C%20Zheng%2C%20W.%2C%20Zhou%2C%20L.%2C%20Zhang%2C%20M.%3A%20Sentence%20similarity%20computation%20in%20question%20answering%20robot.%20IOP%20Conf.%20Ser.%20J.%20Phys.%20Conf.%20Ser.%201237%2C%20022093%20%282019%29
https://scholar.google.com/scholar?q=Jeon%2C%20J.%2C%20Bruce%20Croft%2C%20W.%2C%20Lee%2C%20J.H.%3A%20Finding%20semantically%20similar%20questions%20based%20on%20their%20answers%20%28Copyright%20is%20held%20by%20the%20author%2Fowner.%20SIGIR%E2%80%9905%2C%20August%2015%E2%80%9319%2C%202005%2C%20Salvador%2C%20Brazil%29
https://scholar.google.com/scholar?q=Jeon%2C%20J.%2C%20Bruce%20Croft%2C%20W.%2C%20Lee%2C%20J.H.%3A%20Finding%20semantically%20similar%20questions%20based%20on%20their%20answers%20%28Copyright%20is%20held%20by%20the%20author%2Fowner.%20SIGIR%E2%80%9905%2C%20August%2015%E2%80%9319%2C%202005%2C%20Salvador%2C%20Brazil%29
https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1705.00652
https://arxiv.org/abs/1908.10084
https://amitness.com/2020/06/universal-sentence-encoder/
https://arxiv.org/abs/1803.11175
https://arxiv.org/abs/1804.07754
https://ai.googleblog.com/2018/05/advances-in-semantic-textual-similarity.html
http://arxiv.org/abs/1803.11175

