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ABSTRACT 

The main aim of this research is to design an efficient and low time consumption by utilizing a deep learning, 

advanced NLP techniques to reduce the complexity of searching. It also uses Similarity metrics like cosine 

similarity, set difference similarity that improves the searching process. Our main aim is to design this search 

engine that provides significant links with less time complexity. Users don’t have to search multiple times with 

different words in order to get the actual results they want. This proposed search engine provides results based 

on the semantic meaning. Since it uses a Universal Sentence Encoder that provides semantic search [1,2], 

retrieval, and text clustering and it provides a balance of accuracy and inference speed [3]. We can use this 

work in any type of marketing and business to perform text classification, smart-reply [4] or paraphrase 

detection. 
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I. INTRODUCTION 

The Search engine using “Universal Sentence Encoder” is being developed to assist Search Engine in everyday 

queries in terms of reduced time spent while searching. A semantic Search engine understand the meanings 

hidden in retrieved user’s queries. In simple terms, it is a text search where the user can have a more than 

English type search. Many Search engines have more latency which leads to more time in retrieving the data. 

Usually, Universal Sentence Encoder uses BERT model [5] which has more space & time complexity. The 

proposed model attempts to design an efficient and low time consumption by utilizing a deep learning, 

advanced NLP techniques to reduce the complexity of searching. It also uses Similarity metrics like cosine 

similarity that improves the searching process by: (I)A Deeper understanding of user intent. (II)A more Natural 

language search. (III) Understanding all the data and their context maximizes the possibility of users getting the 

best search experience possible. The Embeddings designed can be used to solve multiple tasks and based on the 

mistakes, it can be updated. As, we use the embeddings on multiple generic tasks, it discards noise and captures 

important features. It consists of components like Tokenization, Encoder, Multi-task Learning, Inference. Since 

it uses a Universal Sentence Encoder that provides semantic search, retrieval, and text clustering and it 

provides a balance of accuracy and inference speed. Search Engine is used to enable the user to locate & learn 

information on the web. This is one of the applications of deep learning. In which the users enter a query and 

the model does some pre-processing, cleaning, and converts into vectors, numerical vectors which is then 

stored as 512-dimensional vector and used to find the cosine similarity [9] between the user’s searched query 

and the one’s that is already present. Now, most similar results are displayed. The querying is done in on 

semantic meaning [8,9]. By doing all this we are able to maintain the application without any bugs and errors. 

We were able to retrieve the results in less than a second along with more accuracy in getting the similar and 

significant links based on semantic search of the user’s query. 

II. LITERATURE SURVEY 

Universal Sentence Encoder [11] is a model from TensorFlow hub that encodes textual data into high 

dimensional vectors known as embeddings. Choosing a right Optimizer and loss function makes the model 

performance better in short period of time. The computational power to train the deep learning models is high 

and we are balancing with simple model architectures. The respective pre-trained models should be 

downloaded and all the packages should be installed. Once we get our required 512-dimensional vector, we use 

this vector to find the cosine similarity between the queries and outputs the most similar links. So, it provides 

the similar results in less time and more accuracy. Universal Sentence Encoder (USE) concept is used by Daniel 

Cer et al. [7] for similar work. Also, according to Veysel Kocaman [10], a senior data scientist has told in his 
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article that USE model gives more accuracy when compared to other models like count-vectorizer, TF-IDF, 

BERT model.  

III. METHODOLOGY 

Implementation of modules  

The Key functions that are to be noticed, processed and implemented are:  

1. Accessing and reading “Python Questions from Stack Overflow” dataset.  

2. Data loading & preprocessing.  

3. Processing the Text data, cleaning.  

4. Developing Universal Sentence Encoder / loading the model from TensorFlow Hub.  

5. Embedding Text into Vectors (i.e., 512-dimension).  

6. Calculate the cosine similarity.  

7. Obtain results that are similar to search query.  

8. Training the model with training dataset.  

9. Evaluate the trained model with test dataset.  

10. Creating a web-app with good user interface using stream lit. 

In order to achieve this project, we used Universal Sentence Encoder, a model from TensorFlow hub that 

encodes textual data into high dimensional vectors known as embeddings. Choosing a right Optimizer and loss 

function makes the model performance better in short period of time. The computational power to train the 

deep learning models is high and we are balancing with simple model architectures. The respective pre-trained 

models should be downloaded and all the packages should be installed. Universal Sentence Encoder performs 

tokenization i.e., the sentence is converted to lowercase & are tokenized. These tokens are then passed into an 

Encoder that encodes sentences into 512- dimensions embedding, based on the trade-offs in accuracy vs 

inference this model chooses different architecture like Transformer Encoder or Deep Averaging Network 

(DAN) [6]. Once we get our required 512-dimensional vector, we use this vector to find the cosine similarity 

between the queries and outputs the most similar links. So, it provides the similar results in less time and more 

accuracy. 

Firstly, we should input the dataset “Python Questions from stack overflow” from Kaggle, this dataset contains 

3 tables – questions, answers, tags  

 

Figure 3.1: Training Dataset 

After the datset is loaded and preprocessed using nlp techniques, we have all the data in required form , we can 

then load the model “universal Sentence Encoder”  from tensor flow hub . This coverts the user input into 512-

dimensional vector. This is used to find the cosine similarity between the input and existing queries. Later, this 

model ouputs the results with most similar sentences. All this happens in less than a second – 0.41 sec. This 

model can now be used to develop search engine just by adding the front-end using Stream Lit.   

Psuedo code: 

Import required packages 

# load model 

module_url = "https://tfhub.dev/google/universal-sentence-encoder/4"  

model = hub.load(module_url) 
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print ("module %s loaded" % module_url) 

# Calculate Cosine similarity 

s=np.dot(item,embed.T) 

norm_a=np.linalg.norm(embed,axis=1) 

norm_a=norm_a*np.linalg.norm(item) 

#Print results 

 

Figure 3.2: Results after training the model USE 

 

Figure 3.3: Home page for search engine

 

Figure 3.4: Output of search query 

IV. RESULTS AND DISCUSSION 

In this section, we compared the performance of existing models of search engine like count-vectorizer, TF-IDF 

based on the time criteria.  

# Using NLP Model - Count vectorizer for word Representation 

We import the Count Vectorizer from sklearn, this creates vector of dimensions that is very large. This model 
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doesn’t give any semantic information that leads to more trials to search for correct data/ information on web. 

This model takes more time to compute results also the accuracy is not up to the mark. 

 Pseudo code: 

from sklearn.feature_extraction.text import CountVectorizer 

vectorizer = CountVectorizer() 

# Calculate cosine similarity 

s=np.dot(item,vectors.T) 

norm_a=np.linalg.norm(vectors,axis=1) 

norm_a=norm_a*np.linalg.norm(item) 

# Print the results 

This model takes nearly 14.14 seconds to compute the results which is very high when compared with 

proposed model Universal sentence encoder. 

 

Figure 4.1: Results after training the model count-vectorizer 

# Using TF-IDF for word representation 

We import the Count Vectorizer from sklearn, this creates vector of dimensions that is very large and based on 

frequency of the occurrence of the word. This model gives the relevance of words in the user’s input. This 

model takes more time to compute results when compared with USE model. 

Pseudo code:  

from sklearn.feature_extraction.text import TfidfVectorizer 

vectorizer = TfidfVectorizer() 

#Calculate cosine similarity 

s=np.dot(item,vectors.T) 

norm_a=np.linalg.norm(vectors,axis=1) 

norm_a=norm_a*np.linalg.norm(item) 

#Print results 

This model takes nearly 1.54 seconds to compute the results which is very high when compared with proposed 

model Universal sentence encoder. 

 

Figure 4.2: Results after training the model TF-ID 
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# Model performance comparison     

 

Figure 4.3: Comparison of models based on time taken to produce results 

 

   Figure 4.4: Bar plot of models based on time taken 

Hence the proposed model is easy to use, with low-computational power and does not require any special 

training. A user can simply search the queries on the web-based application and due its semantic search it 

makes easier to find the required similar results in less than a second. When we compare this with other 

existing models it proves that universal sentence encoder provides results in less time (0.41 seconds) also, the 

resultant links are much similar and accurate to the search query. As a whole, the system is just simplified and 

scalable. Due to the use of NLP and deep learning models this is well trained model that gives accurate results 

in less time. While validating the model with test data the results were accurate and well-defined with semantic 

meaning. 

V. CONCLUSION 

The conclusion of this work is the comparative result of semantic search with less computational time and high 

accuracy. Hence from the above proposed method we have designed a search engine using Universal Sentence 

Encoder that is capable to produce results in less time with more accuracy. The proposed model was designed 

with encoder architecture. Universal Sentence Encoder is a model from TensorFlow hub that encodes textual 

data into high dimensional vectors known as embeddings, based on the trade-offs in accuracy vs inference this 

model chooses different architecture like Transformer Encoder or Deep Averaging Network (DAN). It goes 

through multi-task learning and adds the semantic meaning to the query. Once the model is trained then we can 

use for semantic searches, paraphrase detection, smart-reply, text classification. Once we get our required 512-

dimensional vector, we use this vector to find the cosine similarity between the queries and outputs the most 

similar links. So, it provides the similar results in less time and more accuracy. The model is fully capable of 

being trained by using the 

stochastic gradient descent that makes the training process easier. The experimental evaluations indicate that 

the proposed model is able to generate more accurate results automatically. 

The proposed model attempts to design an efficient and low time consumption by utilizing a deep learning, 

advanced NLP techniques to reduce the complexity of searching. We can achieve more than 90% validation 

accuracy in seconds. 
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