
                                                                                                           e-ISSN: 2582-5208 
International   Research   Journal  of  Modernization   in  Engineering   Technology  and  Science 

Volume:03/Issue:06/June-2021        Impact Factor- 5.354                                www.irjmets.com   

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [135] 

AUTOMATE APPLICATION DEPLOYMENTS BY MODERNIZING CI/CD 

PIPELINES  

Harsh Vardhan Kataria*1, Chandra Shekhar Panwar*2, Abhilash Patel*3, 

 Dr. Preeti Narooka*4 
*1,2,3B. Tech Student, Computer Science Department, Geetanjali Institute Of Technical Studies 

Udaipur, India. 

*4Assistant Professor, Computer Science Department, Geetanjali Institute Of Technical Studies 

Udaipur, India. 

ABSTRACT 

 Imagine a world where product owners, Development, Quality Assurance, Operations, and Information 

Security Teams work together, not only to help each other, but also to ensure that the overall organization 

succeeds in terms of profitability, security and reduced costs. They allow the quick flow of planned work into 

production by working together toward a single objective (e.g. performing tens, hundreds, or even thousands of 

codes deploy per day), while achieving world-class stability, reliability, availability, and security. In our world, 

Development and IT Operations are antagonists; testing of applications and InfoSec activities happen only at 

the end of a project, too late to correct If any issues are discovered, and practically any vital task involves too 

much backbreaking work and too many handoffs, keeping us waiting all of the time. Not only does this 

contribute to extremely long lead times to get anything done, but the quality of work, especially production 

deployments, is also problematic and chaotic, resulting in negative impacts to customers and business. As a 

consequence, we fall well short of our objectives, and the whole business is unhappy with IT's performance, 

leading to budget cuts and irritated, disgruntled staff who feel helpless to influence the process and its 

consequences. Our main goal is to create a platform for developers, which not only compiles & runs the app 

with minimal configurations but also abstracts the deployments part with loose architecture & negligible 

learning curve, and developers will be able to get all the benefits of multi cloud platforms without any hassles. 

Keywords: Continuous Integration, Continuous Deployment, Multi-Cloud Deployments, Kubernetes, Tekton 

Pipelines, Docker. 

I. INTRODUCTION 

The purpose of this project is to build a platform for developers which only requires minimal configurations to 

run the app with a negligible learning curve of backend deployment. All the benefits of the cloud, scaling, 

availability, disaster-recovery, security-constraints, and huge reduction in costs etc., will be handled by the 

platform along with great isolation among different infrastructure levels with features including Automatic 

Builds, Resource Limits, CI/CD Pipelines, and Automatic Scaling as per requirements. 

The main objectives are: - 

i. To setup Automatic Builds for different programming languages. 

ii. Resource Limits for projects deployed. 

iii. Automatic Scaling based on Thresholds as per requirements. 

iv. Continuous Integration & Continuous Deployment Pipelines. 

v. Per Second Billing based on resource consumption. 

II. BACKGROUND OVERVIEW 

A.  Existing System- On analyzing the current methodologies & deployment plans followed by different IT 

Firms, we scrutinized that more than 90% of these firms deploy new updates/patches only on the weekends 

and that too without any senior developer on-board in order to assist the deployment. Secondly, almost every 

other feature that is being deployed is tightly coupled with the whole technology stack.   

B. Drawbacks of Existing System- At the production level, one thing that always haunts a developer is 

whether the code that he/she has written will be successfully deployed or not. Secondly, even if that works out 

in production, every time there’s an added dependency or update/feature one has to set up different versions 



                                                                                                           e-ISSN: 2582-5208 
International   Research   Journal  of  Modernization   in  Engineering   Technology  and  Science 

Volume:03/Issue:06/June-2021        Impact Factor- 5.354                                www.irjmets.com   

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [136] 

of OS, SDK’s, Application Environments, and managing firewalls in order to test applications on different 

platforms which is a huge overhead.  Proposed System- On analyzing these drawbacks, We found the need of a 

platform for developers, where they have to provide only the source and general instructions to run the app 

(minimal configurations), and they will be able to get all the benefits of cloud along with scalability, reliability, 

usability, performance effectiveness and huge cut in costs of deployment and most important great isolation 

among different features along with loosely coupled architecture of the whole technology stack.  

III. METHODOLOGY 

 
Figure 1: DevOps Methodology 

Devlops is a software development (Dev) and operations (Ops) technique (Ops). The goal is to make it 

easier for teams to communicate so that they can create, test, and distribute software more rapidly and 

efficiently. The key factor that differentiates DevOps Methodology from others is the deployment process & 

automation, while other methodologies emphasizes mostly on software development process, DevOps 

actively focusses on the release process of a software in secure & reliable manner with very less manual 

intervention of testing & approving things manually.  The main concept of DevOps is to manage end-to-end 

Engineering Process by collaborating Development & Operation teams work together. It is necessary for 

both the  teams to fully understand the software release & software/hardware requirements & its 

implications to the deployment. 

 
Figure 2: DevOps Work Plan 

IV. SCOPE 
Since DevOps practices & methodologies came into existence, many fortune companies have seen world -

class performance increases and thus achieving revenue increases, faster deployments and less chaos in 

deployment times. DevOps has enhanced product development while simultaneously lowering the risk of 

failure. The pipeline process has been controlled by DevOps in such a way that high-quality software can be 

generated with very less effort. During the development, testing, and deployment phases of a n application, 

one must enable constant feedback of the release process in order to reduce the security concerns that 

arises after it hits the production servers. Our project not only enables developers to achieve World Class 

Reliability, Continuous Integrations & Delivery, and Huge Cost Reductions but also enables them to deploy 

their applications at much higher scale over multi-cloud and managed services. 



                                                                                                           e-ISSN: 2582-5208 
International   Research   Journal  of  Modernization   in  Engineering   Technology  and  Science 

Volume:03/Issue:06/June-2021        Impact Factor- 5.354                                www.irjmets.com   

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [137] 

Future Scope of Our Project: - 

A.   AI/ML Pipelines: - The software development landscape has been altered by DevOps. However, 

artificial intelligence and machine learning may help us to automate our application in a more regulated 

manner. Applying AI and ML to the pipelines can help us run builds and automation in a much better with 

closer insights a control and provide a cost-effective approach to automate an entire working pipeline.  

Platform as a Service (PaaS): - Platform as a service (PaaS) is a growing field with a lot of applications. Gone 

are the days when developers had to worry about putting together a full application architecture. PaaS 

enables teams to expand development capabilities without adding staff, potentially lowering engineering 

expenses. The developers have no control over the underlying cloud infrastructure, such as the network, 

servers, operating systems, or storage, but they do have control over the apps that are deployed and maybe 

the application hosting environment's configuration settings. following Diagram better illustrates the 

differences: - 

    

Figure 3: Difference between IaaS and PaaS 

 

Figure 4: Activity Diagram 



                                                                                                           e-ISSN: 2582-5208 
International   Research   Journal  of  Modernization   in  Engineering   Technology  and  Science 

Volume:03/Issue:06/June-2021        Impact Factor- 5.354                                www.irjmets.com   

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [138] 

 
Figure 5: CI/CD using Tekton Pipelines 

B. Containers Overriding Configuration Management:  - The technology world is being shaken by 

container orchestration platforms. Container orchestration techniques have grown to the point where they 

might eventually replace multiple tools like Ansible, Chef, and Puppet. Kubernetes is the most well -known 

and commonly used container orchestration technology today, but there are many more on the way. 

Container orchestration solutions, when properly designed, may simplify infrastructure provisioning and 

many of the complexity that come with it.  

V. WORKING & RELEVANCE 

A. Distributed Workloads: - In modern architectures, large number of services are delivered over the 

network via APIs. These are distributed by distribution systems that run on several servers and 

configurations in various places, all of which communicate with one another to coordinate their oper ations. 

B. Load Balancers for Zero Downtime: - Gone are the days we used to simply deploy an application in one 

VM and used to point a DNS to it. Load balancing and horizontal scalability is achieved by making systems 

distributed like these. 

C. Restful API’s: - We are using these exposed APIs on a daily basis, all around the globe, these systems 

should be highly reliable and available, i.e. They can't fail, and there should be no downtime. Because these 

services are used all over the world, they must be scalable without requiring a complete overhaul of the 

present infrastructure. For your containerized application, Kubernetes provides appropriate services to do 

all of this. 

D. CI/CD Using Tekton Pipelines: - Continuous Integration (CI) allows us to continuously integrate code 

into a single shared and easy to access repository. Continuous Delivery (CD) helps us to push code from the 

repository to production on a regular basis. CI/CD creates a fast and effective process of getting a product to 

market much before the competition it also helps us in releasing new features and bug fixes.  

 



                                                                                                           e-ISSN: 2582-5208 
International   Research   Journal  of  Modernization   in  Engineering   Technology  and  Science 

Volume:03/Issue:06/June-2021        Impact Factor- 5.354                                www.irjmets.com   

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [139] 

 

Figure 6: Sequence Diagram 

E. Sequence Diagram: - Below Diagram illustrates the flow of a user when they interact with our platform. 

VI. CONCLUSION 
As per the analysis, many IT Firms have shown that releases & deployments should not be high-risk, tightly 

coupled and does not requires hundreds or even thousands of engineers to deploy at production. Instead, it 

should be done is such a manner that should be in everyone’s routine & part of daily workflow.  By doing 

this, we can minimize the impact of failed deployments & chaos at production level & reduce the lead times 

further from months to minutes to even seconds. Our project enables this by minimizing the time & efforts 

required to build & compile the application at different organizational environments (Test, Production) and 

supports different deployment strategies (Blue-Green, Canary, A/B Testing, Shadow, Ramped) by enabling 

automatic builds for different programming languages & creating Continuous Integration & Continuous 

Deployment Pipelines in order to minimize the release times. On integrating with Kubernetes & multi-cloud 



                                                                                                           e-ISSN: 2582-5208 
International   Research   Journal  of  Modernization   in  Engineering   Technology  and  Science 

Volume:03/Issue:06/June-2021        Impact Factor- 5.354                                www.irjmets.com   

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [140] 

platforms, the application could be scaled indefinitely based upon requirements & user traffic, this not only 

supports the isolation b/w different applications but also enables per second billing approach to monetize the 

resources based on consumption per second.  

VII. REFERENCES 

[1] Gene Kim, Patrick Debois, Professor John Willis, Jez Humble, John Allspaw (2017), “The DevOps 

Handbook” in Paperback. 

[2] Citrix Application Delivery and Security, Retrieved From https://www.citrix.com/en-

in/solutions/app-delivery-and-security/what-is-containerization.html 

[3] Alexander Kainz (7 Jul 2020), Microservices vs. Monoliths: An Operational Comparison – The New 

Stack [Blog Post], Retrieved From: https://thenewstack.io/microservices-vs-monoliths-an-

operational-comparison/ 

[4] What is Kubernetes [Documentation] Retrieved From:  

[5] https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/ 

[6] What is CI/CD? [Blog Post] Retrieved From: https://www.redhat.com/en/topics/devops/what-is-

ci-cd. 

 

 

 

https://www.amazon.in/DevOPS-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.amazon.in/DevOPS-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.citrix.com/en-in/solutions/app-delivery-and-security/what-is-containerization.html
https://www.citrix.com/en-in/solutions/app-delivery-and-security/what-is-containerization.html
https://thenewstack.io/microservices-vs-monoliths-an-operational-comparison/
https://thenewstack.io/microservices-vs-monoliths-an-operational-comparison/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd

