

International Research Journal of Modernization in Engineering Technology and Science

Impact Factor- 7.868

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

www.irjmets.com

GENERALIZED FRACTIONAL DIFFERENTIAL OPERATORS INVOLVING MULTIVARIABLE H – FUNCTION

Ram Niwas Meghwal^{*1}, Dr. K.G. Bhadana^{*2}

^{*1}Department Of Mathematics, Government College, Sujangarh India.

^{*2}Department Of Mathematics, SPC Government College, Ajmer India.

ABSTRACT

In this paper we use fractional differential operators $D_{k,q,x}^n$ to derive a number of key formulas of

multivariable H-function. We use the generalized Leibnitz's rule for fractional derivatives in order to obtain one of the aforementioned formulas, which involve a product of two multi variables H-function. It is further shown that ,each of these formulas yield interesting new formulas for certain multivariable hyper geometric function such as generalized Lauricella function (Srivastava-Dauost) and Lauriella hyper geometric function some of these application of the key formulas provide potentially useful generalization of known result in the theory of fractional calculus.

Keywords: Generalized Fractional Differential Operator, Multivariable H-Function.

I. INTRODUCTION

1.1 Definition

Volume:06/Issue:07/July-2024

The fractional derivative of special function of one and more variables is important such as in the evaluation of series, [10,15] the derivation of generating function [12,chap.5] and the solution of differential equations [4,14;chap-3] motivated by these and many other avenues of applications, the fractional differential operators

 $D^n_{k,\alpha,x}$ are much used in the theory of special function of one and more variables.

We use the fractional derivative operator defined in the following manner [5]

$$D_{k,\alpha,x}^{n}(x^{\mu}) = \prod_{r=0}^{n-1} \left[\frac{\sqrt{\mu + rk + 1}}{\sqrt{\mu + rk - \alpha + 1}}\right] x^{\mu + nk}$$
(1.1)

Where $\neq \mu + 1$ and and k are not necessarily integers

We use the binomial expansion in the following manner

$$(ax^{\mu}+b)^{\lambda} = b^{\lambda} \sum_{l=0}^{\infty} {\binom{\lambda}{l}} {\left(\frac{ax^{\mu}}{b}\right)^{l}} \qquad where \quad \left[\frac{ax^{\mu}}{b}\right] < 1$$
(1.2)

Then it is known that the multiple Mellin-Barnes counter integral representing the multivariable Hfunction converges absolutely under the condition when

$$\xi_{i} = \min\left\{\operatorname{Re}\left(\binom{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right\}, \qquad (j = 1, ..., m_{i})$$

$$\eta_{i} = \max\left\{\operatorname{Re}\left(\binom{c_{j}^{(i)} - 1}{\gamma_{j}^{(i)}}\right)\right\}, \qquad (j = 1, ..., n_{i})$$
(1.3)

II. GENERALIZED FRACTIONAL DIFFERENTIATION OPERATORS

The fractional calculus operator involving various special functions, have been found significant importance and applications in various sub-field of application mathematical analysis. Since last five decades, a number of workers like Srivastava et al. [21], Saigo [10] etc. have studied in depth, the properties, applications and different extensions of various hyper geometric operators of fractional calculus.

Let $\alpha, \alpha', \beta', \gamma \in C$, $\gamma = 0$ and $x \in R_+$, then the generalized fractional differentiation operators [25] involving Appell function F₃ as a kernel are defined by the following equations:

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024 Impact Factor- 7.868 www.irjmets.com

$$\begin{pmatrix} D_{0+}^{\alpha,\alpha',\beta,\beta',\gamma}f \end{pmatrix}(x) = \begin{pmatrix} I_{0+}^{-\alpha',-\alpha,\beta',\beta,-\gamma}f \end{pmatrix}(x)$$

$$= \left(\frac{d}{dx}\right)^n \left(I_{0+}^{-\alpha',-\alpha,\beta',n,-\gamma+n}f\right)(x), \quad (Re(\gamma) > 0; n = [Re(\gamma)] + 1)$$

$$(2.2)$$

$$1 \qquad (d)^n \leq 1 \leq f^x \qquad (2.2)$$

$$=\frac{1}{\Gamma(n-\gamma)}\left(\frac{d}{dx}\right)^{n}\left(x^{\alpha'}\right)\int_{0}^{x}(x-t)^{n-\gamma-1}t^{\alpha}F_{3}\left(-\alpha',-\alpha,n-\beta',-\beta,n,-\gamma;1-\frac{t}{x},1-\frac{x}{t}\right)f(t)dt,$$
(2.3)

And

$$\left(D_{-}^{\alpha,\alpha',\beta,\beta',\gamma}f\right)(x) = \left(I_{-}^{-\alpha',-\alpha,\beta',\beta,-\gamma}f\right)(x)$$
(2.4)

$$= \left(-\frac{d}{dx}\right)^n \left(I_-^{-\alpha',-\alpha,\beta',n,-\gamma+n}f\right)(x), \ (Re\ (\gamma) > 0; n = [Re\ (\gamma)] + 1\)$$
(2.5)

$$=\frac{1}{\Gamma(n-\gamma)}\left(-\frac{d}{dx}\right)^{n}(x^{\alpha})\int_{0}^{\infty}(t-x)^{n-\gamma-1}t^{\alpha'}F_{3}\left(-\alpha',-\alpha,n-\beta',-\beta,n,-\gamma;1-\frac{x}{t},1-\frac{t}{x}\right)f(t)dt,$$
(2.6)

where $I_{0+}^{\alpha',\alpha,\beta',\beta,\gamma}$ and $I_{-}^{\alpha,\alpha',\beta,\beta',\gamma}$ are Saigo-Maeda fractional integral operators, and Appell hyper geometric function of two variables is defined as

$$F_{3}(\alpha, \alpha', \beta, \beta'; \gamma; z, \xi) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m}(\alpha')_{n}(\beta)_{m}(\beta')_{n}}{(\gamma)_{m+n}} \frac{z^{m}}{m!} \frac{\xi^{n}}{n!}, \quad (|z| < 1|\xi| < 1);$$
(2.7)

where $(z)_m$ and $(z)_n$ are the Pochhammer symbol defined by $z \in C$ and $m, n \in N_0 = N \cup \{0\}, N = (1,2,3,...)$ by $(z)_0 = 1, (z)_m = z(z+1)...(z+m-1)$. The series in (2.7) is absolutely convergent for

 $(|z| < 1|\xi| < 1) \text{ and } (|z| = 1|\xi| = 1), \text{ where } (z, \xi \neq 1).$

These operators reduce to Saigo derivative operators [25] as

$$\left(D_{0+}^{0,\alpha',\beta,\beta',\gamma}f\right)(x) = \left(D_{0+}^{\gamma,\alpha'-\gamma,\beta'-\gamma}f\right)(x), \quad (Re(\gamma) > 0); \tag{2.8}$$

$$\left(D^{0,\alpha',\beta,\beta',\gamma}f\right)(x) = \left(D^{\gamma,\alpha'-\gamma,\beta'-\gamma}f\right)(x), \quad (Re(\gamma) > 0); \tag{2.9}$$

Further [25, p. 394, Eqns. (4.18) and (4.19)] we also have

$$I_{0+}^{\alpha,\alpha',\beta,\beta',\gamma}x^{\rho-1} = \Gamma\begin{bmatrix}\rho,\rho+\gamma-\alpha-\alpha'-\beta,\rho+\beta'-\alpha'\\\rho+\gamma-\alpha,-\alpha',\rho+\gamma-\alpha'-\beta,\rho+\beta'\end{bmatrix}x^{\rho-\alpha-\alpha'+\gamma-1},$$
(2.10)

Where
$$Re(\gamma) > 0$$
, $Re(\rho) > \max[0, Re(\alpha + \alpha' + \beta - \gamma), Re(\alpha' - \beta')]$, and

$$I_{-}^{\alpha,\alpha',\beta,\beta',\gamma}x^{\rho-1} = \Gamma \begin{bmatrix} 1+\alpha+\alpha'-\gamma-\rho, 1+\alpha+\beta'-\gamma-\rho, 1-\beta-\rho\\ 1-\rho, 1+\alpha+\alpha'+\beta'-\gamma-\rho, 1+\alpha-\beta-\rho \end{bmatrix} x^{\rho-\alpha-\alpha'+\gamma-1},$$
(2.11)

Where
$$Re(\gamma) > 0$$
, $Re(\rho) > \min[Re - (-\beta), Re(\alpha, \alpha', -\gamma), Re(\alpha + \beta' - \gamma)]$,

Here, we have used the symbol Γ representing the fraction of many Gamma functions.

III. MAIN RESULT

Throughout the present paper .we assume that the convergence and existence condition corresponding appropriately to the ones detained above are satisfied by each of the various H-function involved in our results which are presented in the following sections

Generalized Fractional differential operator involving multivariable H-function

In this section we shall prove our main formulas on fractional differential operator involving multivariable Hfunction

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024Impact Factor- 7.868www.irjmets.comTheorem-1

$\Rightarrow D_{k,\alpha,x}^n \{ x^{\lambda} (x^{\nu_1} + a)^{\lambda} (b - x^{\nu_2})^{-\delta} H \left[z_1 x^{\rho_1} (x^{\nu_1} + a)^{\sigma_1} (b - x^{\nu_2})^{-\delta_1} \dots \dots \right]$

 $Z_r x^{\rho_r} (x^{\nu_1} + a)^{\sigma_r} (b - x^{\nu_2})^{-\delta_r}] \}$

Provided (in addition to the appropriate convergence and existence

condition) that

$$\min\left\{ \nu_{1,}\nu_{2}, \rho_{i,}\sigma_{i}, \delta_{i} \right\} > 0 \ (i = 1, ..., r)$$
$$\max\left\{ \left| \arg\left(\frac{x^{\nu_{1}}}{a} \right) \right|, \left| \arg\left(\frac{x^{\nu_{2}}}{b} \right) \right| \right\} < \pi$$
$$\operatorname{Re}(k) + \sum_{i=1}^{r} \rho_{i}\xi_{i} > -1$$

Whee $\xi_i = (i = 1, ..., r)$ are given in (1.3)

$$\Rightarrow a^{\lambda} b^{-\delta} x^{k+nk} \sum_{l,m=0}^{\infty} \frac{\left(\frac{x^{\nu_{1}}}{a}\right)^{l} \left(\frac{x^{\nu_{2}}}{b}\right)^{m}}{[l[m]} H^{0, n'+n+2; m_{1}n_{1},...,m_{r},n_{r}}_{p'+n+2; q'+n+2; p_{1}q_{1},...,p_{r}q_{r}} \\ \times \left[z_{1} x^{\rho_{1}} a^{\sigma_{1}} b^{-\delta_{1}} \right]^{(-\lambda,\sigma_{1},...,\sigma_{r})(-\delta-m;\delta_{1}\delta_{2},...\delta_{r}),(-k-kr-\nu_{1}\nu_{2}m;\rho_{1},..,\rho_{r})0,n-1}_{(\lambda_{r},x^{\rho_{r}}a^{\sigma_{r}}b^{-\delta_{r}}} \bigg|^{(-\lambda+1,\sigma_{1}\sigma_{2},...,\sigma_{r})(1-\delta,\delta_{1},...\delta_{r}),(\alpha-k-rk-\nu_{1}l\nu_{2}m;\rho_{1},..,\rho_{r})0,n-1}_{(a_{j}, a_{j}^{1},...,a_{j}^{(r)})_{1,p}:(c_{j}^{1}r_{j}^{1})_{1,p_{1}}...(c_{j}^{(r)},r_{j}^{(r)})_{1,p_{r}}} \right]$$

$$(3.1)$$

Theorem-2

$$D_{k,a,x}^{n} \left\{ x^{k} (x^{\nu_{1}} + a)^{\lambda} (b - x^{\nu_{2}})^{\delta} H[z_{1} x^{\rho_{1}} (x^{\nu_{1}} + a)^{\sigma_{1}} (b - x^{\nu_{2}})^{-\delta_{1}} \dots \dots z_{r} x^{\rho_{r}} (x^{\nu_{1}} + a)^{\sigma_{r}} (b - x^{\nu_{2}})^{-\delta_{r}} \right] H^{*}[w_{1} x^{\lambda_{1}} \dots \dots w_{s} x^{\lambda_{s}}] \right\}$$

Provided (in addition to the appropriate convergence and existence conditions mentioned with (3.1)

$$\Rightarrow a^{\lambda} b^{-\delta} x^{k+nk} \sum_{l,m=0}^{\infty} \frac{\left(\frac{x^{\nu_1}}{a}\right)^l \left(\frac{x^{\nu_2}}{b}\right)^m}{\lfloor l \lfloor m} H^{0, n'+n+3+N, m_{1,n_1}, \dots, m_r, n_r, M_1, N_1, \dots, M_s, N_s}_{p'+P+n+3, q'+Q+n+3, p_{1,q_1}, \dots, p_r, q_r, P_1, Q_1, \dots, M_s, Q_s} \\ \begin{bmatrix} z_1 a^{\sigma_1} b^{-\delta_1} x^{\rho_1} \\ z_r a^{\sigma_r} b^{-\delta_r} x^{\rho_r} \end{bmatrix}^{(-\lambda_1 \sigma_1, \dots, \sigma_r)} (1-\delta-m; \delta_1, \dots, \delta_r) \left(a_j; \alpha_j^1, \dots, \alpha_j^r\right)_{l,p} \left(c_j^i r_j^i\right)_{l,p_i} \\ (-\lambda_1 + l, \sigma_1, \dots, \sigma_r) (1-\delta; \delta_1, \dots, \delta_r) \left(b_j; \beta_j^1, \dots, \beta_j^r\right)_{l,q} \left(d_j^i \delta_j^i\right)_{l,q_i} \end{aligned}$$

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Theorem-3

$$D_{k,\alpha,x}^{n} \left\{ x^{k} (x^{v_{1}} + a)^{\lambda} (b - x^{v_{2}})^{-\delta} H[z_{1} x^{\rho_{1}} \dots \dots z_{r} x^{\rho_{r}}] \right\}$$

Provided (in addition to the appropriate convergence and existence conditions mentioned with (3.1)

$$\Rightarrow a^{\lambda} b^{-\delta} x^{k+nk} \sum_{l,m=0}^{\infty} \left(\frac{x^{v_1}}{a} \right)^l \left(\frac{x^{v_2}}{b} \right)^m \left(\lambda \atop l \right) \left(\delta \atop m \right) H^{0,n+n': m_1,n_1,\dots,m_r,n_r}_{p+n';q+n';p_1,q_1,\dots,p_r,q_r} \\ \begin{bmatrix} z_1 \chi^{\rho_1} \\ \vdots \\ \vdots \\ z_r \chi^{\rho_r} \end{bmatrix}^{(-k-kv-v_1l-v_2m;\rho_1,\dots,\rho_r)_{t=0,n-1}} \left(a_{j;\alpha_j^{(1)};\dots,\alpha_j^{(r)} \right)_{1,p} \left(c_1^{\dagger}, r_1^{\dagger} \right)_{1,p_1},\dots, \left(c_j^{(r)},\dots, v_j^{(r)} \right)_{1,p_r} \end{bmatrix} \\ \begin{bmatrix} z_1 \chi^{\rho_1} \\ \vdots \\ \vdots \\ z_r \chi^{\rho_r} \end{bmatrix}^{(-k-kv-v_1l-v_2m;\rho_1,\dots,\rho_r)_{t=0,n-1}} \left(a_{j;\alpha_j^{(1)};\dots,\alpha_j^{(r)} \right)_{1,p} \left(c_1^{\dagger}, r_1^{\dagger} \right)_{1,p_1},\dots, \left(c_j^{(r)},\dots, v_j^{(r)} \right)_{1,p_r} \end{bmatrix}$$
(3.3)

Proof:- We first replace the multivariable H-function occurring on the LHS by its Mellin Barnes contour integrals collected the powers of x, $(x^{\nu_1} + a)$ and $(b - x^{\nu_2})$ and apply binomial expansion

$$\left(x+\xi\right)^{\lambda} = \xi^{\lambda} \left(1+\frac{x}{\xi}\right)^{\lambda} = \xi^{\lambda} \sum_{l=0}^{\infty} \binom{\lambda}{l} \left(\frac{x}{\xi}\right)^{l}; \qquad \left|\frac{x}{\xi}\right| < 1$$
(3.4)

We then apply the fractional derivative operator in the following manner [5]

$$D_{k,\alpha,x}^{n}\left(x^{\mu}\right) = \prod_{r=0}^{n-1} \left[\frac{\Gamma\mu + rk + 1}{\Gamma\mu + rk - \alpha + 1}\right] x^{\mu + nk}$$
(3.5)

Where $\alpha \neq \mu + 1$ and α and k are not necessarily integers and interpret the resulting MillenBarnes contour integrals as a H-function of r-variables we shall arrive at(3.1)

Proof of (3.2):-

We first replace the multivariable H-function occurring on the LHS by its Mellin Barnes contour integrals collected the powers of x, $(x^{\nu_1} + a)$ and $(b - x^{\nu_2})$ and apply binomial expansion

$$\left(x+\xi\right)^{\lambda} = \xi^{\lambda} \left(1+\frac{x}{\xi}\right)^{\lambda} = \xi^{\lambda} \sum_{l=0}^{\infty} \binom{\lambda}{l} \left(\frac{x}{\xi}\right)^{l}; \qquad \left|\frac{x}{\xi}\right| < 1$$
(3.4)

We then apply the fractional derivative operator in the following manner [5]

$$D_{k,\alpha,x}^{n}\left(x^{\mu}\right) = \prod_{r=0}^{n-1} \left[\frac{\Gamma\mu + rk + 1}{\Gamma\mu + rk - \alpha + 1}\right] x^{\mu + nk}$$
(3.5)

Where $\alpha \neq \mu + 1$ and α and k are not necessarily integers and interpret the resulting MillenBarnes contour integrals as a H-function of r & s variables we shall arrive at (3.2)

Proof of (3.3):- same as proof of theorem (3.1)

IV. CONCLUSION

In this paper we use fractional differential operators $D_{k,\alpha,x}^n$ to derive a number of key formulas of multivariable H-function. We use the generalized Leibnitz's rule for fractional derivatives in order to obtain one of the aforementioned formulas, which involve a product of three multivariables H-function. It is further shown that ,each of these formulas yield interesting new formulas for certain multivariable hypergeometric function such as generalized Lauricella function (Srivastava-Dauost)and Lauriella hyper geometric function some of these application of the key formulas provide potentially useful generalization of known result in the theory of fractional calculus.

International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024

Impact Factor- 7.868

www.irjmets.com

V. REFERENCES

- [1] **Eredlyi A. et.al:** Tables of Integral Transform, vol.2Mc Graw Hill,NY/Toronto/London (1954)
- [2] **Inayat-Hussain**, A.A. New properties of hypergeometric series derivable from Feynman integrals: I, Transformation and reeducation formulae, J. Phys. A. Math. Gen., 20(1987), 4109-4117.+
- [3] **Inayat-Hussain**, A.A. New properties of hypergeometric series derivable from Feynman integrals: II, A generalization of the H-function, J. Phys. A. Math. Gen , 20(1987), 4119 4128.
- [4] **Buschman R.G. and H.M. Srivastava**, the H-function associated with a certain class of Feynman integrals, J. Phys. A. Math. Gen., 23(1990), 4707-4710.
- [5] Misra A.P. Ganita, 26(1975),1-18
- [6] Mathai, A.M. and Saxena, R. K.: The H-function with application in statistics and other disciplines, Halsted press (Wiley eastern Ltd. ,New Delhi/ Banglore / Bombay) Wiley ,N Y / London/ Sydney/ Toronto, (1970).
- [7] Nishimoto, K: Fractional Calculus Vol.1-4 Descrates Press, Koriyama, (1984, 1987, 1989, and 1991)
- [8] Oldham K.B.and Spanier.J: The Fractional Calculus, Acadmic Press NY/London,(1974)
- [9] **Riana, R.K.(**1985)A note on the fractional derivatives of a general system of polynomials, Indian J.Pure.Appl.Math.,16(7),770-774.
- [10] Saigo , M. and Raina, R.K.(1988) Fukuoka univ.sci.reprts 18(1) ,pp-15-22
- [11] Samko, S.G. Kilbas, A. A. and Maricev, O.L.: Integrals and Derivatives of Fractional order some of their Applications, Nauka, Tekhnika Minsk (1987) in Russian
- [12] Srivastava, H.M. and Panda R: Some expansion theorems and generating relations for the H-Function of several Complex variable I and II, Comment.math, univ.st.paul, 24. (1975) Fasc.2, 119-137; ibid25 (1976), Fasc.2, 167-197
- [13] **Srivastava H.M. and Panda R.** Some expansion theorem for the H-Function of several complex variables J.Reine Angew Math.288 (1976), 129-145
- [14] **Srivastava, H.M. and Panda R:** Some bilateral generations Function for a class of generalized hypergeometric polynomials, J.Reine Angew Math. 283-284 (1976), 265-274
- [15] **Srivastava, H.M. and Panda R:** Some multiple Integral Transformations involving the H-Function of several variables Nederl, Acad.wetensch proc. Ser. A 82 Indag Math.41 (1979) 353-362
- [16] **Srivastava, H.M and Panda R:** Certain Multidimensional Integral Transformations I and II Neder . Acad. Wetensch proc.ser.indag.math40 (1980), 118-131 and 132-144
- [17] **Srivastava, H.M.Gupta K.C. and Goyal S.P.:** The H-Function of one and two variables with application South Asian PublicatiosNew Delhi/Madrs (1982)
- [18] **Srivastava, H.M and Monocha, H.L.:** A Treatise on Generating Functions Halsted Press Chichester and wiley, NY/ Chichester/Brisbane/Toronto (1984)
- [19] **Srivastava, H.M and Goyal S.P.:** Fractional Derivatives of the H-Function of several variables J.Math.Anal Appl. 112,2(1985),641-651
- [20] **Srivastava, H.M and Buschman R.G.:** Theory and Application of Convolution Integral equation, Kluwer, Dordrecht Boston/London,(1992)
- [21] Srivastava , H.M.(1972) Indian J.Math.vol,14,pp.1-6.
- [22] **Srivastava H.M. Chandel, R.C.S.and Vishwakarma, P.K**.: Fractional derivative of certain generalized hypergeometric function of several variables, J. Math.Anall.appl. 184,3(1995),560-572
- [23] Vyas D.N., Banerji, P.K. and Saigo, M. (1994) J. Fractional calculus, 6, 61-64
- [24] **Watanable, Y.:** Notes on the Generalized Derivative of Riemann-Liouville and its applications to Leibnitz's formula I and II, Tonoku, Math. 34 (1931), 8-37 and 28-41
- [25] **Saigo, M. Meada, N**., More Generalized of fractional calculus : Transform Methods and special fuctions, Verna, Bulgaria, 1996)