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ABSTRACT 

In this paper we use fractional differential operators , ,

n

k xD    to derive a number of key formulas of 

multivariable H-function. We use the generalized Leibnitz’s rule for fractional derivatives in order to obtain one 

of the aforementioned formulas, which involve a product of two multi variables H-function. It is further shown 

that ,each of these formulas yield interesting new formulas  for certain multivariable hyper geometric  function  

such as generalized Lauricella function (Srivastava-Dauost) and Lauriella hyper geometric function some of 

these application of the key formulas provide potentially useful generalization of known result in the theory of 

fractional calculus. 
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I. INTRODUCTION 

1.1 Definition  

The fractional derivative of special function of one and more variables is important such as in the evaluation of 

series,[10,15] the  derivation of generating function [12,chap.5] and the solution of differential equations 

[4,14;chap-3] motivated by these and many other avenues of applications, the fractional differential operators  

, ,

n

k xD   are much used in the theory of special function of one and more variables. 

We use the fractional derivative operator defined in the following manner [5]   
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Where≠µ+1 and and k are not necessarily integers 

We use the binomial expansion in the following manner      
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(1.2) 

            Then it is known that the multiple Mellin-Barnes counter integral representing the multivariable H-

function converges absolutely under the condition when                                         
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II. GENERALIZED FRACTIONAL DIFFERENTIATION OPERATORS 

The fractional calculus operator involving various special functions, have been found significant importance 

and applications in various sub-field of application mathematical analysis. Since last five decades, a number of 

workers like Srivastava et al. [21], Saigo [10] etc. have studied in depth, the properties, applications and 

different extensions of various hyper geometric operators of fractional calculus. 

Let   then the generalized fractional differentiation operators [25] 

involving Appell function F3  as a kernel are defined by the following equations: 
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                                                     (2.1) 

(2.2) 

(2.3) 

And 

                                                            (2.4) 

                    (2.5) 

  (2.6) 

where   are Saigo-Maeda fractional integral operators, and Appell hyper 

geometric function of two variables is defined as 

    (2.7) 

where  are the Pochhammer symbol defined by   

 

The series in (2.7) is absolutely convergent for 

 

These operators reduce to Saigo derivative operators [25] as 

                                   (2.8) 

                                     (2.9) 

Further [25, p. 394, Eqns. (4.18) and (4.19)] we also have 

               (2.10) 

Where  

            (2.11) 

Where  

Here, we have used the symbol representing the fraction of many Gamma functions. 

III. MAIN RESULT 

Throughout the present paper .we assume that the convergence and existence condition corresponding 

appropriately to the ones detained above are satisfied by each of the  various H-function involved in our results 

which are presented in the following sections 

Generalized Fractional differential operator involving multivariable H-function 

In this section we shall prove our main formulas on fractional differential operator involving multivariable H-

function 
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Theorem-1 

 

                                                                       

Provided (in addition to the appropriate convergence and existence 

condition) that 
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Whee  1,....,i i r   are given in (1.3)                     

 

 

                                        (3.1) 

Theorem-2 

 

 

Provided (in addition to the appropriate convergence and existence conditions mentioned with (3.1)    
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            (3.2) 

Theorem-3 

 

Provided (in addition to the appropriate convergence and existence conditions mentioned with (3.1)     

 

          (3.3) 

Proof:-     We first replace the multivariable H-function occurring on the LHS by its Mellin Barnes contour 

integrals collected the powers of x,  1x a

  and  2b x


  and apply binomial expansion 
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We then apply the fractional derivative operator in the following manner [5]       
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Where 1    and   and k are not necessarily integers and interpret the resulting MillenBarnes contour 

integrals as a H-function of r-variables we shall arrive at(3.1) 

Proof of (3.2):- 

We first replace the multivariable H-function occurring on the LHS by its Mellin Barnes contour integrals 

collected the powers of x,  1x a

  and  2b x


  and apply binomial expansion  
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We then apply the fractional derivative operator in the following manner [5]       
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Where 1    and   and k are not necessarily integers and interpret the resulting MillenBarnes contour 

integrals as a H-function of r & s variables we shall arrive at (3.2) 

Proof of (3.3):- same as proof of theorem (3.1) 

IV. CONCLUSION 

In this paper we use fractional differential operators , ,

n

k xD    to derive a number of key formulas of 

multivariable H-function. We use the generalized Leibnitz’s rule for fractional derivatives in order to obtain one 

of the aforementioned formulas, which involve a product of three multivariables H-function. It is further shown 

that ,each of these formulas yield interesting new formulas  for certain multivariable hypergeometric  function  

such as generalized Lauricella function (Srivastava-Dauost)and Lauriella hyper geometric function some of 

these application of the key formulas provide potentially useful generalization of known result in the theory of 

fractional calculus. 
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