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ABSTRACT 

Partial Differential Equations (PDEs) are fundamental tools in the mathematical modeling of phenomena across 

various scientific and engineering disciplines, including fluid dynamics, electromagnetic theory, and financial 

mathematics. Traditionally, solutions to these equations are sought through analytical methods or numerical 

techniques such as finite differences, finite elements, and spectral methods. However, these conventional 

approaches often struggle with complex geometries, nonlinearities, and the need for high precision across 

broad domains. Bernstein polynomials have emerged as a powerful alternative for numerically solving PDEs. 

Their properties—non-negativity, partition of unity, and ease of differentiation and integration—make them 

particularly suitable for approximation tasks. Bernstein polynomials are foundational in computer-aided 

geometric design due to their strong stability and best-approximation characteristics under certain norms. 

Hybrid methods that integrate Bernstein polynomials with numerical techniques like collocation, Galerkin, or 

tau methods have demonstrated enhanced convergence rates and accuracy. These methods have been 

successfully applied to a wide range of problems, from simple heat transfer to complex fluid flows, achieving 

reduced computational costs and improved precision. Despite some challenges, such as determining the 

optimal polynomial degree and managing computational efficiency, ongoing research continues to address 

these issues, broadening the applicability and effectiveness of Bernstein polynomials in solving PDEs. 
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I. INTRODUCTION 

Partial Differential Equations (PDEs) form the cornerstone of mathematical modeling of phenomena in various 

scientific and engineering disciplines, encompassing areas such as fluid dynamics, electromagnetic theory, and 

financial mathematics. The solutions to these equations often provide insights into the dynamics of systems and 

are crucial in predicting behaviors in real-world scenarios. 

Classically, PDEs are tackled using analytical methods when possible, and otherwise, numerical methods such 

as finite differences, finite elements, and spectral methods are employed. However, there are limitations to 

these traditional approaches, particularly when dealing with complex geometries, nonlinearities, and problems 

requiring high accuracy over global domains. 

In recent years, the use of Bernstein polynomials has gained prominence as a powerful tool in the numerical 

solution of PDEs. Bernstein polynomials possess several advantageous properties, such as non-negativity, 

partition of unity, and ease of differentiation and integration, which make them suitable for approximating 

solutions to PDEs. 

The literature indicates that Bernstein polynomials are particularly effective due to their geometric 

representation and approximation capabilities. These polynomials form the basis of Bezier curves and surfaces, 

which are paramount in computer-aided geometric design (CAGD). Their strong stability properties and the 

ability to form a ’best approximation’ under certain norms have been well-documented. 

Researchers have integrated Bernstein polynomials with numerical methods to develop hybrid approaches. 

These methods often involve representing the solution as a Bernstein polynomial series and then discretizing 

the PDE using techniques such as collocation, Galerkin, or tau methods. This approach has been found to 

enhance the convergence rates and provide highly accurate solutions. 

Applications in various fields have been explored, ranging from simple heat transfer problems to complex fluid 

flows characterized by shocks and discontinuities. Studies have shown that the use of Bernstein polynomials 

can lead to reduced computational costs and improved accuracy. 
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However, there are challenges associated with this approach. The degree of the polynomial can significantly 

affect the computational efficiency, and the choice of the degree is not always straightforward. Moreover, while 

Bernstein polynomials ensure local control of the approximation, their global support can lead to a dense 

system matrix, which may pose computational challenges. 

Recent advancements have addressed some of these challenges. Adaptive methods that adjust the polynomial 

degree based on the solution’s behavior and domain decomposition techniques that localize the problem have 

been proposed. Furthermore, the development of sparse Bernstein polynomial techniques has been a 

significant step toward mitigating the computational intensity. In conclusion, Bernstein polynomials represent 

a promising direction for the numerical solution of PDEs, offering advantages in stability, accuracy, and 

geometric interpretation. While challenges remain, ongoing research continues to refine these methods, 

expanding their appli- cability and efficiency. The combination of Bernstein polynomials with traditional 

numerical techniques holds the potential to address some of the most challenging problems posed by PDEs in 

modern computational science. 

II. BERNSTEIN POLYNOMIALS AND NUMERICAL METHOD 

Bernstein polynomials 

Bernstein polynomials represent a specific group of polynomials with significant roles in approximation theory 

and the field of computer graphics. These polynomials are notably utilized in formulating B´ezier curves. 

A Bernstein polynomial of degree n is defined for k = 0, 1, 2,  , n as : 

 

1. Bk,n(t) is non-negative within the interval [0, 1]. 

2. Bk,n(t) is continuous function on [0, 1]. 

3. The sum of Bernstein polynomials of degree n is 1 for every t ∈ [0, 1]. 

4. Bernstein polynomials are symmetric in the sense that  

Bk,n(t) = Bn−k,n(1 − t). 

5. Bk,n(t) can be written in the form of recursive relation: 

Bk,n(t) = (1 − t)Bk,n−1(t) + tBk−1,n−1(t). 

2.1 Proposed method: 

The methodology for solving partial differential equations (PDEs) using a hybrid method that combines 

Bernstein polynomials with traditional numerical techniques, such as finite difference or finite element 

methods, can be quite intricate due to the complex nature of PDEs. This approach is designed to leverage the 

strengths of both polynomial approximation (for smooth, global representation) and numerical discretization 

methods (for handling complex geometries and boundary conditions). Let’s discuss this methodology in detail: 

2.2 Problem statement 

Consider a partial differential differential equation of the form 

L[u(x, y)] = f (x, y), 

where L is a differential operator, u(x, y) is unknown function, and f (x, y) is a given function. 
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2.3 Initial approximation with Bernstein Polynomials 

The next step is to approximate the solution u(x, y) using a series of Bernstein polynomials. Bernstein 

polynomials are particularly useful for their properties of stability and good approximation capabilities. The 

approximation is typically expressed as: 

 

where Bk,n(z) is the Bernstein polynomial of degree n and aij are the coefficients to be determined. 

1. Discretization using Numerical Methods 

The domain of the PDE is discretized into a grid or mesh, and a numerical method (like finite difference) is 

applied to approximate the derivatives in the PDE at discrete points. This step transforms the continuous PDE 

into a discrete form that can be solved computationally. 

2. Combining Both Approaches 

The Bernstein polynomial approximation is substituted into the discretized form of the PDE at each grid point 

or within each mesh element. This integration of the polynomial approximation with the numerical method 

leads to a system of equations that govern the Bernstein coefficients aij. 

3. Solving the System for Bernstein Coefficients 

The resulting system of equations (which could be linear or nonlinear) is solved using numerical methods such 

as iterative solvers, Newton-Raphson method, or Gaussian elimination. This step determines the values of the 

Bernstein coefficients aij that best fit the PDE under the chosen discretization. 

4. Iterative Refinement and Error Analysis 

The accuracy of the solution is evaluated, and error analysis is performed. If necessary, adjustments are made 

to the degree of the Bernstein polynomial or the discretization parameters. An iterative process is applied, 

where the solution is refined by progressively adjusting the polynomial degree or the discretization scheme 

until the desired accuracy is achieved. 

5. Validation and Application 

Finally, the obtained solution is validated against known solutions or through numerical simulations. The 

method is tested on various types of PDEs to assess its versatility and limitations. 

Benefits and Challenges: The hybrid method combines the global approximation capabilities of Bernstein 

polynomials with the local precision of numerical discretization methods, offering a balance between accuracy 

and computational efficiency. However, the approach can be computationally intensive, especially for higher 

degrees of polynomials and finer discretizations, and may require sophisticated numerical techniques to handle 

nonlinearity and stability issues. 

III. NUMERICAL RESULTS 

This section includes the implementation and analysis of proposed method to solve PDE. The obtained solution 

is compared with exact solution. 
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The PDE is discretized and solved using Bernstein finite difference method. This method involves creating a 

system of equations based on the PDE and solving it for the coefficients of the Bernstein polynomials, which 

approximate the solution. A surface plot visualizes the solution obtained by this method. The error obtained is 

3.8048e−10. 

Exact Solution Using Berstrain Finite Difference Method 

Error Analysis 

 

1c: 

Fig 1: Advection equation: 

IV. CONCLUSION 

In summary, Bernstein polynomials present a promising approach for the numerical solution of PDEs, offering 

benefits in terms of stability, accuracy, and geometric interpretation. While the computational intensity and 

polynomial degree selection pose challenges, recent advancements in adaptive methods and domain 

decomposition techniques have addressed some of these issues. The development of sparse Bernstein 

polynomial techniques has further mitigated computational demands. The hybrid method, which combines 

Bernstein polynomials with traditional numerical techniques, balances global approximation capabilities with 

local precision, providing a robust solution for complex PDEs. Ongoing research continues to refine these 

methods, expanding their applicability and efficiency in modern computational science. By integrating 

Bernstein polynomials with established numerical techniques, this approach holds potential for addressing 

some of the most challenging problems in PDEs. 
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