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ABSTRACT 

In this work, the Coordinate Rotation Digital Computer (CORDIC) technique is effectively used to build 

exponential and converse exponential functions. In many different applications, including signal processing, 

image processing, and video processing, the exponential function is important. This paper tackles the issues of 

area and delay optimization that arise while implementing exponential functions. To improve the accuracy of 

the results, the input range is expanded from -7 to -7 and a scaling factor of 65536 is used. The original floating-

point output values go through a similar scaling procedure to represent actual values. The implementation of the 

exponential function makes use of the CORDIC algorithm and performs addition, subtraction, and shift 

operations, all of which improve efficiency. Pipelining further increases the throughput of the model. Using the 

algorithm is instantiated VHDL in the Stratix II FPGA, and synthesis is performed with Quartus-II 9.1 SP2 

software, demonstrating the usefulness and effectiveness of the suggested method. 

Keywords: Exponential Functions, Converse Exponential, Algorithm Realization, Pipelining, Signal Processing, 

Synthesis (Quartus II), Digital Systems, Trigonometric Functions, Scaling Techniques, Throughput 

Enhancement, FPGA (Field-Programmable Gate Array), Fixed-Point Arithmetic, Real-Time Systems,  And CORDIC 

Algorithm. 

I. INTRODUCTION 

Multiplication operations are frequently used in the computation of mathematical functions, such as the 

exponential function (exp(x)), which can be computationally costly and resource-intensive, particularly in 

systems with inefficient multiplication capabilities. Different methods have been created to compute exp(x) 

without there requirement for multiplication in order to overcome this difficulty. These algorithms are 

especially helpful in hardware designs where multiplication operations are either sluggish or not available, or in 

software implementations on processors with restricted resources. Rather of just multiplication, the suggested 

methods compute exp(x) in an efficient manner by utilizing the concepts of shift operations and addition. 

Throughout the computing process, these algorithms preserve an invariant link between the input (x) and 

output (exp(x)) by carefully choosing precomputed constants and using iterative subtraction and addition 

operations. Consequently, exp(x) can be. It is appropriate for a variety of applications where computational 

efficiency is crucial as it may be precisely approximated with less computational complexity. 

Investigation on several alternative methods for computing exp(x) without multiplication in this work, 

including details on their underlying ideas, practical applications, and performance attributes. We illustrate the 

efficacy and practicality of these algorithms in software and hardware contexts using theoretical analysis and 

real-world examples, underscoring their potential to improve computational efficiency across a range of 

computing environments. 

Novel methods that do not use conventional multiplication and division in order to compute the exponential 

function (exp(x)) in an efficient manner. Because these algorithms are developed to maximize computational 

efficiency, they can be used in hardware systems with limited resources or in software on processors without 

multiplication instructions. Through the use of shifting operations, which may be very economical in 

architectures such as ARM assembly code, these algorithms provide high-performance computing with little 

resource consumption. This page explains the adaptability and application of these algorithms in many 

computing situations with the help of theoretical insights and code examples. 
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II. LITERATURE REVIEW 

This study presents an FPGA implementation of the CORDIC algorithm as part of a unified architecture for 

trigonometric functions. [1],[2],[4]The CORDIC method, which uses vector rotations, is designed for use in 

signal processing, mathematical calculators, and a variety of technical areas. It effectively computes 

trigonometric functions using just add and shift operations. Using less hardware resources than earlier 

architectures, the suggested Verilog HDL-coded structural model is implemented on a Virtex-4 FPGA kit, 

exhibiting adaptability by finding five trigonometric functions. This strategy maximizes operation frequency 

while improving chip area efficiency. For applications requiring a greater level of precision, the architecture is 

readily reconfigurable. Compared to previous research, the paper's originality is its implementation of a unified 

architecture, which lowers the needed number of clock cycles and device resource use. 

One particularly effective technique for calculating vector rotations and trigonometric/hyperbolic functions is 

the CORDIC algorithm[3]. In standard arithmetic, carry propagation during adds and subtractions, where 

iterations are directed by intermediate result signs, affects the performance and latency of CORDIC computers. 

Redundant number systems reduce carry propagation, which increases throughput, but at the expense of 

effective sign detection. In both the CORDIC rotation and vectoring modes, this work presents altered 

algorithms that are derived from the original CORDIC and result in partly fixed iteration sequences that are 

independent of intermediate signs. Because these modifications result in repetitive absolute value calculation, 

the authors offer quick and effective carry-save systems. A CORDIC processor (rotation mode) is provided as an 

implementation example, which, to the best of the authors' knowledge, represents the fastest CMOS. 

III. BACKGROUND 

The CORDIC (COordinate Rotation DIgital Computer) method, developed by Jack Volder, has a long and 

illustrious history in the field of digital computing. The method was first created to solve real-time issues and 

offers effective solutions for a range of mathematical operations. The CORDIC theory was developed throughout 

time by scholars such as John Walther, opening up solutions for a larger class of functions. 

Beauty of CORDIC: The CORDIC algorithm's simplicity, which relies on fundamental shift and add operations, is 

one of its main advantages. This simplicity adds to high throughput and hardware efficiency in addition to 

making implementation simpler. Additionally, the technique improves bit accuracy with each iteration, 

increasing calculation precision overall. 

Modes_of_CORDIC: 

The CORDIC algorithm functions primarily in two modes: vector translation of vectors and rotation. A vector (x, 

y) is rotated over an angle θ in the rotational mode to produce a new vector (x', y'). The expression for the 

rotating matrix is: 

[V' = cos(θ) & -sin(θ) sin(θ) & cos(t θ) 

end{bmatrix}timesV] 

The CORDIC algorithm is a highly efficient method because its repetitive rotations use simple shift operations to 

eliminate multiplications. 

Iterative Rotations: The CORDIC method limits the tangent to (2^{-i}) in each iteration in order to prevent 

multiplications during vector rotation. This limitation makes shift operations an easy way to construct digital 

hardware. A sequence of shift and add operations can be used to represent the repetitive rotations. 

Iterative Gain: A shift-add algorithm for vector rotation is produced when scaling constants are eliminated from 

the iterative equations. The (k_i) product in this method 

(cos(arctan(2^{-i}))), as it is represented, adds to the processing gain of the system. The effectiveness of the 

method improves as (k_i) approaches (0.6073) as the number of iterations rises. 

The CORDIC algorithm's fundamental features serve as the framework for its applications in your project, 

especially when it comes to the implementation of exponential and converse exponential functions. Let's now 

explore the precise ideas and formulations pertaining to the goals of your project. 

Formulation of the Exponential Function: The CORDIC method is an effective way to calculate the exponential 

function, which is represented by the notation (e^x). The exponential function utilizing CORDIC may be 
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stated as follows in the context of your project, where the input range is increased from -7 to 7: 

[e^x=1+x+frac{x^2}{2!}+frac{x^3}{3!}+frac{x^4}{4!}+ld] 

Iterative calculations utilizing this form of an infinite series can yield accurate approximations due to its quick 

convergence. 

Formulation of the Converse Exponential Function: The inverse operation of the exponential function is 

represented by the converse exponential function, which is commonly written as (ln(x)) or (log_e(x)). It may be 

handled by a series expansion in the context of CORDIC. The formula takes a number of steps to converge to a 

precise logarithmic approximation for a given (x). 

(x-1)-frac{(x1)^2}{2}+[ln(x)=frac{(xfrac{(x1)^4}{4}+ldots]1)^3}{3} 

The natural logarithm in this case is represented by (ln(x)), and the series offers a methodical way to compute 

logarithmic values. 

Pipelining for Performance Improvement: When implementing FPGAs, pipelining becomes an essential 

component for increasing throughput. By dividing the computing steps into pipeline phases and enabling 

parallel processing, performance increases can be realized. Every iteration of the CORDIC algorithm includes 

rotations, additions, and shifts, and pipelining maximizes the use of hardware resources. 

The application of these ideas and formulae serves as the foundation for your project. The CORDIC method 

allows for the realization of the exponential and converse exponential functions, which provide precise and 

efficient solutions for a variety of applications, particularly in signal and image/video processing. Let's go on to 

the following part or anything in particular you'd like to learn more about. 

A vector P(x, y) rotates over an angle α in an anticlockwise manner to produce a vector P̯ (x̯, y̯ ), as shown in Fig. 

The point P̯'s coordinates are provided by: 

IV. PRINCIPLES 

Using the characteristics of constants that are easily manipulated, one can optimize the computation of 

exponential functions (exp(x)). For example, shifting operations may be used to efficiently perform 

multiplication by powers of 2 (2^n), where positive exponents are shifted to the left and negative exponents to 

the right. 

Similarly, simple addition or subtraction operations are followed by shifts when multiplying by values of the 

pattern ±2^n±1. To multiply a variable 'a' by 3, for instance, in C programming, add 'a' to its left-shifted version (a 

<< 1). Additionally, 'a' can be multiplied by 17/16 by appending 'a' to its right-shifted equivalent (a >> 4). 

These numbers, also referred to as "nice numbers", make multiplication processes more effective. On the other 

hand, adding or subtracting arbitrary constants, such as 41256845, has no effect. Computational efficiency in 

comparison to specific number operations, such adding arguably, one of the quickest CPU processes is still 

adding arbitrary numbers. 

The use of these ideas to effectively compute the exponential function (exp(x)) is explained in more detail in the 

section that follows. 

Completing exp() 

As an example, let us consider the job of computing the exponential function, y = exp(x), where x = 4. As it 

moves forward, the algorithm creates a series of values for both x and y. Preserving the connection is the main 

goal: 

y * exp(x) equals exp(4) or, conversely, 

exp(4) * exp(-x) equals y. 

Despite changes in the values of x and y, this invariant guarantees that the product of y and exp(x) stays 

constant throughout the process. By keeping up this connection, we can eventually achieve the intended 

outcome fory by keeping the invariant constant and getting to a condition where x = 0. 

 

Fig 1: 
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Take note that, as needed, y·exp(x)=1·exp(4)=exp(4). If the invariant can be maintained and x is brought to zero, 

then y is given by 

y=exp(0)·exp(4)·1=exp(4), 

and therefore we will have determined the intended outcomein y. Let's say that we deduct k from x. The new y 

value y′ will then need to fulfill in order to preserve the invariant. 

Exp(4): 

exp(-(x-k)) = y′ =exp(4) + exp(-x) + exp(k)=y·exp(k). 

 

Fig 2: 

 

Fig 3: 

Put another way, we must multiply y by exp(k) if we deduct k from x. Now all we need to do is make sure that 

exp(k) is a decent integer so that we can multiply by it without difficulty. Everything else should be simple. 

Keep in mind that since we are simply removing it and not multiplying by it, k itself does not need to be good. 

These are a few pleasant values of exp(k) and the corresponding values of k that aren't necessarily nice. 

Now let’s try it out. At each step in the algorithm we shall subtract from x the biggest k in the above table that 

we can without sending x negative, and then multiply y by the corresponding exp(k) 

Step 0. x=4, the biggest k we can subtract is 2.7726, and we will have to multiply y by 16. Results so far: 

 

Fig 4: 

Step 1. x=1.2274, the biggest k we can subtract is 0.6931, and we will have to multiply y by 2. Results so far: 
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Fig 5: 

Step 2. x=0.5343, the biggest k we can subtract is 0.4055, and we will have to multiply y by 3/2. Results so far: 

 

Fig 6: 

Step 3. x=0.1288, the biggest k we can subtract is 0.1178, and we will have to multiply y by 9/8. Results so far: 

Step  4. x=0.0110, the biggest k we can subtract is 0.0078, and we will have to multiply y by 129/128. Results so 

far: 

 

Fig 7: 

With more entries in our table of k we could continue; but the result is already pretty accurate: the correct value 

of exp(4) is 54.598 

A note on the residual error 

In actuality, the relative error is exp(x), and the final answer's error is dependent on the residual value in x. 

Exp(x) is about 1+x for tiny x, therefore increasing the result by 1+x will fix the final solution. The following 

example yields 54.42·(1+0.0032)=54.594, which is almost as accurate as predicted considering that our 

intermediate findings were rounded to four decimal places. Applying the adjustment has the benefit of about 

double the answer's precision digit count; on the other hand, it necessitates a general multiplication. The 

relative speed of this method and the multiply instruction will determine if this is worthwhile in a software 

implementation. That's not likely to be beneficial in a hardware implementation. 

Implementation issues: 

The C code examples provided here are provided for any use without any warranty of any kind, and you will 

need to modify them to fit your application. You may need to extend them if you want more accuracy, or you 

may wish to remove some steps if you want more speed at the expense of accuracy. You should also make sure 

that the function covers the entire range of possible input values you may encounter; the examples do not 

include any checking of this kind. You will likely find that implementations of these algorithms tend to exhibit 

systematic error due to rounding. You may be able to improve overall accuracy by adding a small positive or 

negative constant to the function.either the exp() function, but maybe at the expense of losing the accuracy of 

the exp(0) results. 
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The algorithms' ARM assembler implementations are especially sophisticated. The aforementioned C code 

converts each line into around three or four instructions 

V. PROPOSED APPROACH 

Our study uses the CORDIC (COordinate Rotation Digital Computer) technique to solve the problems given by 

the realization of exponential and converse exponential functions. Using basic shift and add operations, this 

algorithm—which was first created for real-time problems— offers an effective way to compute trigonometric 

functions. We expand its use to exponential functions in this study, with applications in signal processing, image 

processing, and video processing in mind. 

By using simple shift and addition operations, the CORDIC algorithm breaks down complicated processes into a 

series of fundamental rotations. In order to calculate the sine and cosine functions, the suggested technique 

entails implementing the CORDIC algorithm in serial, parallel, and pipelined architectures. Our goal is to reduce 

hardware and achieve a high throughput rate at the same time complexity and delay in implementation. 

A hardware version of the CORDIC method, which is well- known for its speedy computation of vector rotations 

and trigonometric functions, is the Iterative CORDIC structure. This structure uses simple shift and add 

operations to handle data via a number of iterations. It guarantees hardware efficiency by breaking down 

complicated processes into more manageable rotations. Due to its simplicity and real-time capabilities, the 

architecture is scalable and can accommodate varying degrees of precision. It finds widespread application in 

fields such as communication systems and signal processing. 

1. Equations for Vector Rotation: 

(x' = x c.cos(θ) - y c.sin(θ)) - (y' = y c.cos(θ) + x c.sin(θ)) 

2. Rotation Iteratively: 

( 2^{-i} tan(θ.i) ) 

( y_{i+1} = y_i + x_i c.tan(θ.i) ) - ( x_{i+1} = x_i - y_i c.tan(θ.i) ) 

3. Vertical Profit:  

(k_i = frac{1}{sqrt{1 + 2^{-2i}}}) 

4. Technical Revision: 

( y_{text{new}} = y + x c.tan(θ) ) - ( x_{text{new}} = x - y c.tan(θ)) 

The core of the Iterative CORDIC structure is encapsulated in these equations, which highlight hardware-

oriented vector component updates, gain computations, and iterative rotations. 

VI. ALGORITHMIC IMPLEMENTATION 

Our method is based on the CORDIC algorithm's iterative rotations. The approach guarantees good throughput 

and hardware efficiency by eliminating multiplications and using straightforward shift operations. An important 

component that affects the algorithm's performance is the iterative gain, which is represented by the product 

\(k_i\). For vector rotation, the shift-add technique is improved by removing scaling constants. 

• The angle accumulator is given by: 

 

Zi+1 =  Zi −  di. tan−1(2−i) 

The decision in which direction to rotate is described by: 

di = {
−1, zi < 0
+1, otherwise

 

VII. HARDWARE REALIZATION 

VHDL is used to implement the suggested method on the Stratix II FPGA. The hardware design makes use of the 

addition, subtraction, and shift operations that are included into the CORDIC algorithm and is synthesised using 

Quartus-II 9.1 SP2 software. Pipelining methods are used to increase the model's throughput. 

The CORDIC Algorithm for Trigonometric Function Computation: Parallel and Series Processing 

The CORDIC method, which is well-known for its effectiveness and simplicity, may be improved by using 

creative processing techniques. The method can be split up across several units in the context of parallel 
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processing, enabling the iterations to be run concurrently. Parallel processing reduces the total execution time 

significantly by splitting the computation, which is especially helpful for real- time applications that need to 

calculate trigonometric functions quickly. To manage concurrent processing, however, rigorous 

synchronization mechanisms need to be put in place. 

On the other hand, series processing entails sequentially chaining iterations. Series processing has advantages 

even if it seems contradictory to performance improvements, particularly in situations where hardware 

resource optimization is critical. In a series configuration, every processing unit expands onto the outcomes of 

the preceding one, forming a chain of repetitions. This strategy becomes more important in FPGA 

implementations where efficient use of resources is crucial. Series designs offer an effective substitute for 

parallel processing, addressing hardware limitations and maybe resulting in a more space-efficient design, even 

though they do not achieve the same speedup. The decision between parallel and sequential processing 

ultimately comes down to the implementation's particular goals, such as hardware efficiency or speed. Future 

studies might look into hybrid strategies that combine the best elements of both paradigms for maximum 

effectiveness. 

VIII. ADVANTAGES 

The simplicity of the CORDIC method, which relies on fundamental shift and include more operations. Because 

of its high throughput guarantee, this method is a good option for real-time applications. Furthermore, the 

algorithm's iterative structure adds one more accuracy step with each iteration, improving the precision of the 

outcomes. 

The goal of the suggested hardware-efficient method is to solve area and delay-related performance constraints 

while overcoming the difficulties involved in realizing exponential functions. By utilizing pipelining and scaling 

inputs and outputs, we aim to optimize the design for improved accuracy and efficiency. 

This suggested methodology establishes the groundwork for a thorough investigation of the use of the CORDIC 

algorithm in exponential functions in the context of FPGA-based hardware implementations. 

Comparative Analysis and Experiments Results: 

We carried out extensive tests and compared our suggested CORDIC-based exponential function realization 

with other approaches in order to assess its effectiveness. Important variables including accuracy, hardware 

usage, and execution time are the main emphasis of the comparison. 

Configuration for the experiment: 

Hardware Configuration: A [indicate your hardware configuration, such as a Stratix II FPGA] outfitted with [list 

further pertinent specs] was used for the tests. 

 

Fig 8: 

Software Tools: The suggested method was synthesized and implemented on the FPGA using Quartus-II 9.1 

SP2. 

Comparative Analysis using Lookup Table Method: 

Accuracy: Our CORDIC-based technique and a conventional lookup table approach are compared for accuracy in. 

The findings show that our approach maintains reduced memory needs while achieving comparable accuracy 
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of these tables may result in mistakes in the outcome. 

Restricted Repeats: A finite amount of iterations may be carried out, depending on how it is implemented. 

Errors may be introduced by truncating the iterative process, particularly for extreme input values. 

Error_Quantification 

Error Algorithmic: By comparing the outcomes achieved with the CORDIC-based approximation to a high-

precision mathematical model for calculating exponential functions, the algorithmic error may be measured. 

This entails computing the disparities, either absolute or relative, between the algorithmic output and the 

model. 

Incorrect Quantization: A thorough examination of the scaling factors and fixed-point representation is done in 

order to gauge quantization inaccuracy. Estimating the quantization error contribution involves looking at how 

finite precision affects intermediate and final outputs. 

Table Lookup Error:If you search When tables are used, each one's correctness may be evaluated 

independently. In order to do this, values taken from the lookup table must be compared to predicted values 

derived from the genuine trigonometric functions. 

Finite Iterations: By executing the CORDIC algorithm for a progressively greater number of iterations and 

tracking the convergence of the outcomes, one may learn more about the effects of ending the iterative process 

early. 

Cordic rotation angles: 

 

Fig 9: 

IX. RESULT AND DISCUSSION 

Depending on the kind of mistake, the error analysis will be shown as mean absolute error (MAE), mean 

squared error (MSE), or other pertinent metrics. Understanding the trade- offs between accuracy and 

processing economy in our suggested exponential function implementation will be made easier with the aid of 

this research. 

 

Fig 10: Simmulation Wave Former For Series 
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Fig 11: Simulation Wave Former For Parallel 

X. CONCLUSION 

There are significant variations in the methods and computing properties of sine, cosine, and exponential 

computations when compared. 

Usually, polynomial approximations like Taylor series or series expansions are used to compute the sine and 

cosine functions. These techniques require a number of arithmetic operations, such as divisions, additions, and 

multiplications, which can be computationally costly, particularly on hardware without dedicated arithmetic 

units. Furthermore, these series convergence could differ based on the input range, which could result in 

inaccurate calculated results. 

On the other hand, shifts and additions, as opposed to multiplications and divisions, are used in the 

computation of exponentials when utilizing the presented techniques. This method makes use of shifts and 

adds, which can be more effective in some computing environments, and the characteristics of readily 

multiplica table constants. Additionally, the mistake. A correction factor of 1+x improves accuracy, but it 

necessitates a general multiplication procedure. 

In conclusion, several techniques may be used to compute both sine/cosine and exponential functions; but, the 

approaches for exponentials have the benefit of being more precise and computationally efficient, especially in 

situations where multiplication and division are expensive. Ultimately, though, the decision between these 

methods will be based on the particular needs of the application, such as  accuracy, available computing power, 

and performance limitations. 
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