
 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024 Impact Factor- 7.868 www.irjmets.com

 www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1]

TEMPLATIZATION: AN APPROACH TO IMPROVE SCALABILITY AND

MAINTAINABILITY OF CODEBASES

Vishnu Vardhan Reddy Chilukoori*1
*1Lead Data Engineer, Amazon.Com Services LLC, India.

DOI : https://www.doi.org/10.56726/IRJMETS59798

ABSTRACT

Templatization is a software engineering practice that involves using templates, patterns, and abstractions to

modularize and standardize code components. This approach can significantly improve the scalability and

maintainability of codebases by reducing redundancy, streamlining development processes, and promoting

code reuse. In the context of data engineering, templatization can be applied to various aspects, such as data

partitioning, indexing strategies, and query optimization, to enhance performance and ensure consistency

across different projects and environments. By embracing templatization, software development teams can

cultivate scalable, maintainable codebases that are adaptable to future advancements in technology and

business requirements.

Keywords: Apache Spark, Containerization, Data Engineering, Data Warehousing, Docker, Performance

Optimization, Query Optimization Algorithms, Regulatory Compliance, Reproducible Workflows, Secure Coding

Practices, Software Development, Version Control.

I. INTRODUCTION

In the dynamic landscape of software development, creating a scalable and maintainable codebase is crucial for

long-term success. As software projects grow in complexity and the number of contributors increases, the need

for efficient development practices becomes paramount. Templatization, a software engineering approach that

emphasizes the use of templates, patterns, and abstractions to modularize and standardize code components,

has emerged as a promising solution to address these challenges.

Chilukoori et al. [10] highlight the use of Docker to create standardized, reproducible development

environments for Apache Spark, a popular framework in data engineering. This approach aligns with the

principles of templatization, as Docker containers encapsulate the entire Spark environment, including

dependencies and configurations, into a reusable template. This ensures consistency across different

development stages and deployment environments, promoting reproducibility and reducing environment-

related issues.

Furthermore, templatization fosters scalability by enabling rapid prototyping and deployment of new features.

Developers can leverage pre-defined templates to build upon existing code efficiently, minimizing the need for

repetitive coding tasks. This abstraction accelerates development cycles and empowers teams to respond

swiftly to evolving requirements and market demands.

II. LITERATURE REVIEW

Software engineering is a relatively young discipline compared to more traditional fields of engineering, such as

civil or mechanical engineering. While the latter benefit from well-established theoretical foundations and

principles rooted in mathematics and physics, software engineering is still working to establish a set of widely

accepted fundamental principles (Al-Sarayreh et al.) [1]. In this context, Al-Sarayreh et al. [1] conducted a

systematic mapping study to identify and analyze research on software engineering principles (SEPs).Their

study revealed that while numerous SEPs have been proposed, there is a lack of consensus and a need for

further research to refine and consolidate these principles. The authors also highlighted the importance of

developing a standardized process for identifying and applying SEPs throughout the software development

lifecycle.

The importance of software engineering principles is also highlighted in Wohlin et al. [2], where the authors

propose a general theory of software engineering that emphasizes the balancing of three intellectual capitals:

human, social, and organizational. The authors argue that software development is a knowledge-intensive

http://www.irjmets.com/

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024 Impact Factor- 7.868 www.irjmets.com

 www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[2]

activity that relies heavily on people, their interactions, and the organizational structures that support them.

This theory underscores the need for a holistic approach to software engineering, considering not only

technical aspects but also the human and social dimensions. In the realm of software measurement, Murphy

and Cormican [3] present a case study of a global software company that implemented a radical measurement

program but failed to achieve the desired productivity improvements. The study attributes this failure to

several factors, including a narrow focus on projects rather than organizational goals, a lack of staff training in

measurement activities, and a project centric culture that prioritized on-time delivery over quality and

productivity measurement. The findings of this study emphasize the importance of aligning measurement

programs with organizational goals, providing adequate training, and fostering a culture that values

measurement and continuous improvement.

The challenges associated with software measurement are further explored in the work of Gobert et al. [4],

which focuses on testing database manipulation code. The authors conducted a study on open-source projects

and found that database manipulation code was often poorly tested. They identified several challenges faced by

developers in this context, including database management, mocking, parallelization, and framework/tool

usage. The study highlights the need for better tools and practices to support the testing of database

manipulation code, which is crucial for ensuring the reliability and quality of software systems. In the context of

emerging technologies, van Vulpen et al. [5] investigate the governance of decentralized autonomous

organizations (DAOs) that produce open-source software (OSS). The authors propose a governance framework

for such DAOs, emphasizing the need to balance the particularities of OSS production with the challenges of

decentralized governance. The study highlights the importance of considering various governance mechanisms,

including leadership and role structure, decision-making processes, legal foundations, project chartering,

incentives, community management, and software development processes. The findings of this study are

relevant to the broader discussion of software engineering principles, as they demonstrate the need for

adaptable and effective governance structures in the context of decentralized software development.

In the rapidly evolving landscape of software development, the adoption of DevOps practices has gained

significant attention. Grande et al. [6] conducted a systematic mapping study to investigate the benefits and

challenges of adopting DevOps in distributed and global software engineering settings. The study found that

while adopting DevOps in such settings can bring several advantages, such as shorter release cycles, improved

reliability, and faster feedback, it also presents challenges related to skill set requirements, communication

management, and resistance to change. The findings of this study underscore the importance of carefully

considering the specific context and challenges of distributed development when adopting DevOps practices.

The integration of machine learning (ML) components into software systems presents unique challenges for

software engineering. Naveed et al. [7] conducted a systematic literature review on model-driven engineering

(MDE) for ML components, exploring the motivations, solutions, evaluation techniques, and limitations of

existing studies. The study found that while MDE can offer benefits such as reduced complexity and improved

quality, there are also challenges related to data preprocessing, scalability, and responsible ML development.

The findings of this study highlight the need for further research in this area, particularly in addressing the

challenges and ensuring the responsible and ethical use of ML in software systems.

In the context of open science and empirical software engineering, Kessel and Atkinson [8] propose new data

structures and a dedicated platform to support the reproducibility and reusability of test-driven software

experiments. The authors argue that existing approaches for representing and analyzing experimental data are

often ad hoc and lack transparency, hindering the ability of other researchers to repeat, replicate, or reproduce

the experiments. The proposed data structures and platform aim to address these challenges by providing a

standardized and accessible way to represent, store, and analyze experimental data, thus promoting open

science practices in software engineering research.

Finally, Serban et al. [9] investigate the adoption and effects of software engineering practices for machine

learning (ML). The authors conducted a mixed-methods study involving a systematic literature review, a survey

of practitioners, and validation interviews. The study identified a comprehensive catalog of engineering

practices for ML and found that while larger and more experienced teams tend to adopt more practices,

trustworthiness practices are often neglected. The study also found that the effects of adopting these practices,

http://www.irjmets.com/

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024 Impact Factor- 7.868 www.irjmets.com

 www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[3]

such as team agility and accountability, can be predicted from groups of practices. The findings of this study

provide valuable insights into the current state of ML engineering practices and their impact on the

development of software with ML components.

Chilukoori et al. [10] explore the use of Apache Spark and Docker for data engineering development. They

highlight the challenges of setting up local development environments for Spark and how Docker can address

these challenges by providing containerized environments. The authors emphasize the benefits of using

Docker, such as reproducibility, dependency management, and isolation, which align with data engineering

principles. The study provides insights into how Docker can streamline local development, ensure consistent

Spark environments, and facilitate smoother transitions to production environments.

In the realm of cloud data warehouses, Chilukoori et al. [11] present a framework for optimizing query

performance. The framework includes performance monitoring, bottleneck identification, and optimization

implementation. The authors emphasize the importance of data partitioning, indexing strategies, and query

optimization algorithms in improving query performance. A case study is presented to demonstrate the

effectiveness of the framework in a real-world scenario, highlighting the potential for significant performance

improvements and cost savings.

Chilukoori et al. [12] discuss the role of data warehousing in the financial services industry. The authors

highlight the challenges faced by the industry, such as data integration, data quality, and scalability, but also

emphasize the opportunities presented by data warehousing, such as enhanced risk management, improved

customer service, and regulatory compliance. The regulatory landscape, including data privacy, security, and

reporting requirements, is also examined. The article provides a comprehensive overview of the current state

of data warehousing in the financial services industry and its potential impact on the sector.

Gangarapu et al. [13] delve into the security challenges of embedded firmware engineering in the age of edge

computing. The authors explore the unique vulnerabilities of edge computing environments, including resource

constraints, physical accessibility, and distributed architecture. They emphasize the crucial role of embedded

firmware engineers in mitigating these risks through secure coding practices, hardware-based security

features, and secure boot processes. The article also discusses the evolving threat landscape targeting edge

devices and proposes future research directions for embedded firmware security.

Chilukoori et al. [14] [15] investigate the use of Scala for accelerating prototype-to-production application

development in data engineering. The authors highlight Scala’s concise syntax, strong type system, and

compatibility with popular frameworks like Apache Spark. Through case studies, they demonstrate how Scala

can significantly reduce development time, improve code quality, and enhance scalability in data engineering

projects. The findings underscore the potential of Scala as a valuable tool for rapid prototyping and efficient

development in the data engineering domain.

III. IMPLEMENTATION

Templatization is implemented in quite a few ways. The two most common approaches in data engineering are

1. f-strings in Python environments and 2. Jinja templates. We will review these two means of reducing code

redundancy.

F-strings

F-strings stands for the formatted strings in Python, released in version 3.6. It simplifies the variable

substitution process in a string compared to earlier options, such as string concatenation. Let us look at a

straightforward example here of how we can use it with an SQL query to retrieve the inventory of a product.

In the examples seen in Fig. 1, 2, we have produced a dataset with store_id, product_id, and quantity columns

from the product_inventory table. Now, if we would like to add more columns to this dataset, all we need to do

is add those column names to the columns variable; it takes care of the rest. We can add more complexity to the

template, such as a column filter.

We built a reusable template for selecting data from any table. We can further extend this template to calculate

a given product's inventory. We have removed the need to write the SQL query for every product available in

the store, and it is easy to update the definitions of these metrics, too.

http://www.irjmets.com/

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024 Impact Factor- 7.868 www.irjmets.com

 www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[4]

Figure 1: An example of F-Strings in Python.

Jinja Templates

Jinja2 is a powerful templating engine for Python, widely used in web development and beyond. It allows you to

create dynamic content by combining template files with data from your Python code. This separation makes

your code cleaner, easier to maintain, and prevents accidental mixing of logic and presentation.

Instead of hardcoding values directly into your code, you use placeholders, for e.g., {{ variable }} that Jinja2

replaces with actual data during rendering. We can use conditional statements {% if ... %}, {% else %} and loops

{% for ... %} to create more complex templates that adapt to different situations or iterate over lists of items.

Jinja2 also provides built-in filters to format dates ({{ date | date:'F j, Y' }}), manipulate strings ({{ name |

capitalize }}), and perform other useful transformations. This helps in organizing our templates efficiently by

creating base layouts and extending them with specific content blocks in child templates. We can see the

example code from Fig 1., converted into Jinja template in Fig. 3. As we see in the Python snippet, we can

perform more advanced formatting using if/else, for loops in Jinja, which provides more flexibility than the F-

strings.

Figure 2: Executing our Python example to produce the SQL statement.

http://www.irjmets.com/

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024 Impact Factor- 7.868 www.irjmets.com

 www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[5]

Figure 3: A Jinja template based SQL template.

IV. CONCLUSION

We have looked into two means of utilizing templates effectively to avoid rewriting SQL queries for similar

features using Python and Jinja. Templating provides a significant boost in the productivity of engineers while

raising the maintainability of the entire codebase.

V. REFERENCES

[1] K. T. Al-Sarayreh, K. Meridji, and A. Abran, “Software engineering principles: A systematic mapping

study and a quantitative literature review,” Engineering Science and Technology, an International

Journal, vol. 24, no. 3, pp. 768–781, 2021. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S221509862034252X

[2] C. Wohlin, D. Šmite, and N. B. Moe, “A general theory of software engineering: Balancing human, social

and organizational capitals,” Journal of Systems and Software, vol. 109, pp. 229–242, 2015. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0164121215001740

[3] T. Murphy and K. Cormican, “An analysis of non-observance of best practice in a software measurement

program,” Procedia Technology, vol. 5, pp. 50–58, 2012, 4th Conference of ENTERprise Information

Systems – aligning technology, organizations and people (CENTERIS 2012). [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2212017312004379

[4] M. Gobert, C. Nagy, H. Rocha, S. Demeyer, and A. Cleve, “Best practices of testing database manipulation

code,” Information Systems, vol. 111, p. 102105, 2023. [Online]. Available: https://www.sciencedirect.

com / science /article/pii/S0306437922000886

[5] P. van Vulpen, J. Siu, and S. Jansen, “Governance of decentralized autonomous organizations that

produce open source software,” Blockchain: Research and Applications, vol. 5, no. 1, p. 100166, 2024.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2096720923000416

[6] R. Grande, A. Vizcaı́no, and F. O. Garcı́a, “Is it worth adopting devops practices in global software

engineering? possible challenges and benefits,” Computer Standards Interfaces, vol. 87, p. 103767,

2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S092054892300048X

http://www.irjmets.com/
https://www.sciencedirect.com/science/article/pii/S221509862034252X
https://www.sciencedirect.com/science/article/pii/S221509862034252X
https://www.sciencedirect.com/science/article/pii/S0164121215001740
https://www.sciencedirect.com/science/article/pii/S2212017312004379
https://www.sciencedirect.com/science/article/pii/S0306437922000886
https://www.sciencedirect.com/science/article/pii/S0306437922000886
https://www.sciencedirect.com/science/article/pii/S2096720923000416
https://www.sciencedirect.com/science/article/pii/S092054892300048X

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:07/July-2024 Impact Factor- 7.868 www.irjmets.com

 www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[6]

[7] H. Naveed, C. Arora, H. Khalajzadeh, J. Grundy, and O. Haggag, “Model driven engineering for machine

learning components: A systematic literature review,” Information and Software Technology, vol. 169,

p. 107423, 2024. [Online]. Available: https://www.sciencedirect.com /science/ article/pii/

S0950584924000284

[8] M. Kessel and C. Atkinson, “Promoting open science in test-driven software experiments,” Journal of

Systems and Software, vol. 212, p. 111971, 2024. [Online]. Available: https://www.sciencedirect.com/

science/ article/pii/S0164121224000141

[9] A. Serban, K. van der Blom, H. Hoos, and J. Visser, “Software engineering practices for machine learning

– adoption, effects, and team assessment,” Journal of Systems and Software, vol. 209, p. 111907, 2024.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0164121223003023

[10] S. S. R. Chilukoori, S. Gangarapu, and C. K. Kadiyala, “Development with apache spark and docker: A

data engineering perspective,” International Journal of Innovative Research in Science, Engineering and

Technology, vol. 13, no. 6, pp. 10 390–10 397, 6 2024. [Online]. Available: https://www.ijirset.com

/upload /2024/june/4_Development.pdf

[11] S. S. R. Chilukoori, S. Gangarapu, and C. K. Kadiyala, “Optimizing query performance in cloud data

warehouses: A framework for identifying and addressing performance bottlenecks,” International

Journal of Advanced Research in Engineering and Technology, vol. 15, no. 3, pp. 288–297, May - June

2024. [Online]. Available: https://iaeme.com/Home/article_id/IJARET_15_03_025

[12] S. S. R. Chilukoori, S. Gangarapu, and C. K. Kadiyala, “Data warehousing in the financial services

industry: Challenges, opportunities, and regulatory considerations,” Journal of Advanced Research

Engineering and Technology, vol. 3, no. 1, pp. 34–44, 6 2024. [Online]. Available: https://iaeme.com/

Home/ article_id /JARET_03_01_004

[13] S. Gangarapu, S. S. R. Chilukoori, and C. K. Kadiyala, “Securing the edge: Embedded firmware

engineering in the age of edge computing,” International Journal of Advanced Research in Engineering

and Technology, vol. 15, no. 3, pp. 333–343, May - June 2024. [Online]. Available: https://iaeme.com/

Home/ article_id/IJARET_15_03_029

[14] S. S. R. Chilukoori, S. Gangarapu, and C. K. Kadiyala, “Accelerating prototype to production application

development in data engineering with scala,” International Research Journal of Engineering and

Technology, vol. 11, no. 6, pp. 496–502, 6 2024. [Online]. Available: https://www.irjet.net/archives

/V11/i6/IRJET-V11I677.pdf

[15] P. R. Chintala, V. V. R. Chilukoori, and S. S. R. Chilukoori, “A review of pair programming (gen-ai) tools in

data engineering,” International Research Journal of Modernization in Engineering Technology and

Science, vol. 6, no. 4, pp. 7529–7530, 4 2024. [Online]. Available: https://www.irjmets.com/

uploadedfiles/paper//issue_4_april_2024/53795/final/fin_irjmets1713866966.pdf

http://www.irjmets.com/
https://www.sciencedirect.com/science/article/pii/S0950584924000284
https://www.sciencedirect.com/science/article/pii/S0950584924000284
https://www.sciencedirect.com/science/article/pii/S0164121224000141
https://www.sciencedirect.com/science/article/pii/S0164121224000141
https://www.sciencedirect.com/science/article/pii/S0164121223003023
https://www.ijirset.com/upload/2024/june/4_Development.pdf
https://www.ijirset.com/upload/2024/june/4_Development.pdf
https://iaeme.com/Home/article_id/IJARET_15_03_025
https://iaeme.com/Home/article_id/JARET_03_01_004
https://iaeme.com/Home/article_id/JARET_03_01_004
https://iaeme.com/Home/article_id/IJARET_15_03_029
https://iaeme.com/Home/article_id/IJARET_15_03_029
https://www.irjet.net/archives/V11/i6/IRJET-V11I677.pdf
https://www.irjet.net/archives/V11/i6/IRJET-V11I677.pdf
https://www.irjmets.com/uploadedfiles/paper/issue_4_april_2024/53795/final/fin_irjmets1713866966.pdf
https://www.irjmets.com/uploadedfiles/paper/issue_4_april_2024/53795/final/fin_irjmets1713866966.pdf

