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ABSTRACT 

This paper presents the design and implementation of an IoT-based flight controller for unmanned aerial 

vehicles (UAVs). The system integrates real-time sensor data, cloud connectivity, and remote monitoring for 

enhanced flight stability and control. Utilizing microcontrollers, wireless communication, and IoT protocols, the 

controller enables autonomous operation and remote access. Experimental results demonstrate improved 

efficiency, real-time responsiveness, and scalability, making it suitable for various UAV applications, including 

surveillance and delivery systems. 

Keywords: Iot-Based, Unmanned Aerial Vehicle, Real-Time, Remote Monitoring, Autonomous Operations, 
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I. INTRODUCTION 

The emergence of Unmanned Aerial Vehicles (UAVs) has opened new avenues in various fields such as 

surveillance, agriculture, logistics, and defense. Traditionally, UAVs are controlled by onboard flight controllers, 

which can either be autonomous or manually operated through remote control systems. With the rise of the 

Internet of Things (IoT), UAVs can now be connected to cloud-based systems, offering new possibilities for 

remote management, real-time data processing, and enhanced operational efficiency. This paper explores the 

concept of integrating IoT technologies into UAV flight controllers. The main goal is to improve the 

communication capabilities of UAVs and provide remote monitoring of flight parameters, system health, and 

control adjustments. The IoT-based flight controller aims to facilitate more efficient and secure UAV operations 

by enabling real-time decision-making from remote locations. 

II. LITERATURE REVIEW 

IoT technologies have increasingly been utilized in UAV systems to enhance their capabilities. Several studies 

and projects have proposed integrating IoT for real-time monitoring, remote control, and data collection in UAV 

applications. For Example: The use of IoT sensors to gather environmental data and transmit it in real-time to 

ground stations. Similarly, system where IoT connectivity enabled live video streaming and remote flight 

control. Moreover, IoT integration in UAVs has facilitated advancements in autonomous flight, where IoT-based 

communication networks enable UAVs to make real-time decisions by accessing and analysing cloud-based 

data. Additionally, the challenges and benefits of incorporating IoT in UAV systems, such as improved security, 

enhanced remote diagnostics, and better flight management. However, despite the advancements, challenges 

such as Versatility, Monitoring, and energy consumption in IoT-enabled UAVs still remain. 

This paper aims to address these challenges by proposing a novel IoT-based flight controller architecture that 

mitigates some of these issues while maintaining real-time control and monitoring of UAVs. 

III. METHODOLOGY 
The architecture of the IoT-based flight controller consists of three primary components: the UAV hardware, 

the IoT platform, and the user interface. 

3.1 UAV Hardware 

The UAV hardware includes the flight controller, sensors, communication modules, and power systems. The key 

components are: 

 Flight Controller: The flight controller manages the UAV's stabilization, navigation, and control systems, 

typically including a gyroscope, accelerometer, and Barometer. 

 Sensors: Various sensors (GPS, barometer, temperature, humidity) are integrated into the UAV to provide 

real-time data on altitude, speed, battery health, and environmental conditions. 
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 Communication Modules: The UAV is equipped with wireless communication modules such as Wi-Fi, 

LoRa, or cellular modules to transmit data to and from the IoT platform. 

3.2 IoT Platform 

The IoT platform acts as the intermediary between the UAV and the ground station. It receives data from the 

UAV, processes it, and sends control commands back to the UAV. This platform can be hosted on Blynk, 

Adafruit, etc. 

Key features of the IoT platform include: 

 Data Storage: Continuous data logging and storage for flight parameters, GPS coordinates, and sensor data. 

 Remote Monitoring and Control: Web-based interfaces or mobile applications to monitor UAV status, 

adjust flight parameters, and receive alerts for system failures. 

3.3 User Interface 

The user interface provides a way for operators to interact with the IoT-based flight control system. It can be a 

mobile app or web-based dashboard that shows real-time data from the UAV, such as flight path, battery life, 

sensor readings, and system health. This interface allows the operator to make adjustments in flight, such as 

changing speed, altitude, or even performing an emergency landing. 

IV. SYSTEM DESIGN AND IMPLEMENTATION 

4.1 Hardware Design 

For this study, we selected the Teensy Microcontroller due to its compatibility with various sensors and IoT 

communication modules. The UAV was equipped with GPS, barometer, and temperature sensors to monitor 

environmental conditions. The communication module chosen was a Wi-Fi module for real-time data 

transmission to the IoT platform. 

4.2 Software 

We used Saga GIS that integrates Teensy with an LiDar. The software communicates with the Controller via 

Cellular connection, extracting data from the flight controller and sending it to the Handheld Device. 

 Real-Time Data Transfer: The UAV sends data such as altitude, velocity, battery health, and GPS 

coordinates. 

 User Interface: The web-based interface allows operators to view real-time UAV parameters and issue 

commands remotely. 

4.3 Communication Protocols 

 We implemented MQTT (Message Queuing Telemetry Transport), a lightweight and efficient protocol 

suitable for IoT communication. MQTT is used to transmit telemetry data from the UAV to the cloud and to 

receive control commands from the user interface. 

V. FIRMWARE AND SOFTWARE DEVELOPMENT 

5.1 Programming the Teensy Microcontroller 

The Teensy microcontroller is a powerful choice for UAV applications due to its high processing speed, real-

time capabilities, and extensive peripheral support. Programming the Teensy involves setting up the 

development environment, selecting the appropriate programming languages, and utilizing necessary libraries. 

Development Environment 

 Arduino IDE with Teensyduino Add-on: Provides a simple interface for programming and uploading code. 

 PlatformIO: A more advanced environment that supports additional debugging and version control. 

 VS Code + GCC Toolchain: Used for more in-depth firmware development with direct hardware access. 

Programming Languages 

 C/C++: The primary languages used for embedded systems programming due to their efficiency and control 

over hardware. 

 Assembly: Occasionally used for low-level optimization and performance-critical operations. 

Libraries and Frameworks 

 Teensyduino Libraries: Provide functions for interfacing with hardware components. 
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 FreeRTOS: Supports real-time task management. 

 i2c_t3, SPI, and Serial Libraries: Essential for sensor communication and data exchange. 

Code Structure and Best Practices 

 Modular Programming: Breaking down firmware into reusable functions and libraries. 

 Interrupt-Driven Design: Efficient use of hardware interrupts for real-time responsiveness. 

 Code Optimization Techniques: Reducing memory footprint and execution time through compiler 

optimizations. 

5.2 Real-Time Operating Systems (RTOS) vs. Bare-Metal Programming 

Firmware for flight controllers can be developed using either RTOS or bare-metal programming. 

RTOS-Based Approach 

 Allows multitasking, handling multiple operations concurrently. 

 Provides scheduling mechanisms to ensure time-sensitive tasks are executed properly. 

 Examples: FreeRTOS, ChibiOS 

 Used for mission-critical applications requiring deterministic response times. 

Bare-Metal Programming 

 Directly manipulates hardware registers for optimized performance. 

 More challenging to manage concurrent processes. 

 Requires efficient handling of interrupts and state machines. 

 Suitable for applications where performance and minimal overhead are priorities. 

5.3 Sensor Data Acquisition and Processing 

IMU Data Processing 

 Communication Protocol: I2C or SPI is used to interface with the IMU. 

 Data Fusion Techniques: Kalman Filter or Complementary Filter is used to merge accelerometer and 

gyroscope data for accurate orientation. 

 Sampling Rate Considerations: Ensuring high-frequency sampling to maintain flight stability. 

LiDAR Data Handling 

 Data Parsing: LiDAR typically communicates via UART/SPI. 

 Noise Filtering: Statistical and AI-based filtering techniques remove outliers and inaccuracies. 

 Point Cloud Processing: Converting raw LiDAR data into a usable 3D point cloud representation. 

GPS Data Integration 

 NMEA Sentence Parsing: Extracts latitude, longitude, altitude, and velocity information. 

 Sensor Fusion: Combines GPS with IMU data for precise positioning. 

 DGPS (Differential GPS): Uses correction signals to improve GPS accuracy for UAV applications. 

5.4 Flight Control Software Design 

 State Machines: Used for handling different flight modes (takeoff, hover, navigation, landing). 

 Interrupt Handling: Ensures real-time responsiveness to sensor data. 

 Data Logging: Logs flight data for post-flight analysis and debugging. 

 Failsafe Mechanisms: Implementing watchdog timers and redundancy for critical operations. 

5.5 Software Testing and Debugging 

 Simulation Environments: Gazebo and MATLAB simulations for testing algorithms. 

 Hardware-in-the-Loop (HIL) Testing: Integrating real hardware with simulation for accurate results. 

 Debugging Tools: JTAG, Serial Monitor, and Logic Analyzers for troubleshooting firmware issues 

 Automated Testing Frameworks: Unit testing and integration testing for ensuring firmware reliability. 

5.6 Security Considerations in Firmware Development 

 Firmware Encryption: Prevents unauthorized modifications to the flight controller’s software. 

 Secure Bootloader Implementation: Ensures that only verified and signed firmware updates can be applied. 



                                                                                                                     e-ISSN: 2582-5208 

International Research  Journal  of  Modernization  in Engineering  Technology and Science 

( Peer-Reviewed, Open Access, Fully Refereed International Journal ) 

Volume:07/Issue:04/April-2025                        Impact Factor- 8.187                           www.irjmets.com                                                                    

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

[1922] 

 Data Integrity Checks: Uses cryptographic hashing to validate data integrity during communication. 

 Secure Communication Protocols: Using AES encryption for telemetry and control data exchange 

VI. FLIGHT STABILIZATION 

6.1 PID Implementation for Drone Attitude Control 

In drone applications, separate PID controllers are typically implemented for: 

 Roll Control: Stabilizes rotation around the front-to-back axis 

 Pitch Control: Manages rotation around the side-to-side axis 

 Yaw Control: Handles rotation around the vertical axis 

 Altitude Control: Maintains desired height 

6.2 Motor Control and ESC Interfacing 

Effective motor control translates stabilization algorithms into physical motion through Electronic Speed 

Controllers (ESCs). 

Brushless DC Motor Fundamentals 

Operating Principles: 

 Three-phase design with permanent magnets 

 Electronic commutation replaces mechanical commutators 

 High efficiency and power-to-weight ratio 

Motor Parameters for Drone Selection: 

 KV rating: RPM per volt (lower for larger props) 

 Maximum current draw 

 Torque characteristics 

 Dynamic response 

VII. CONCLUSION 

The integration of IoT into UAV flight controllers significantly enhances the capabilities of UAVs, allowing for 

better monitoring, real-time adjustments, and cloud-based decision-making. This paper demonstrated a 

working model of an IoT-based flight controller, highlighting the benefits of cloud integration for remote 

operation, real-time analytics, and data storage. 

Future work will focus on optimizing communication protocols for lower power consumption, improving 

security measures to safeguard data transmission, and expanding the system to support multiple UAVs in a fleet 

management system. 
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