
 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:07/Issue:04/April-2025 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1919]

DESIGN AND IMPLEMENTATION OF IOT BASED FLIGHT CONTROLLER

Prof. Karuna Bogawar*1, Mr. Tanmay Nimje*2, Mr. Ashwin Deshmukh*3,

Ms. Komal Tupkar*4, Ms. Tanisha Thakur*5
*1,2,3,4,5Department Of Industrial IOT, Priyadarshini College Of Engineering, Nagpur, India.

DOI : https://www.doi.org/10.56726/IRJMETS71863

ABSTRACT

This paper presents the design and implementation of an IoT-based flight controller for unmanned aerial

vehicles (UAVs). The system integrates real-time sensor data, cloud connectivity, and remote monitoring for

enhanced flight stability and control. Utilizing microcontrollers, wireless communication, and IoT protocols, the

controller enables autonomous operation and remote access. Experimental results demonstrate improved

efficiency, real-time responsiveness, and scalability, making it suitable for various UAV applications, including

surveillance and delivery systems.

Keywords: Iot-Based, Unmanned Aerial Vehicle, Real-Time, Remote Monitoring, Autonomous Operations,

Remote Access.

I. INTRODUCTION

The emergence of Unmanned Aerial Vehicles (UAVs) has opened new avenues in various fields such as

surveillance, agriculture, logistics, and defense. Traditionally, UAVs are controlled by onboard flight controllers,

which can either be autonomous or manually operated through remote control systems. With the rise of the

Internet of Things (IoT), UAVs can now be connected to cloud-based systems, offering new possibilities for

remote management, real-time data processing, and enhanced operational efficiency. This paper explores the

concept of integrating IoT technologies into UAV flight controllers. The main goal is to improve the

communication capabilities of UAVs and provide remote monitoring of flight parameters, system health, and

control adjustments. The IoT-based flight controller aims to facilitate more efficient and secure UAV operations

by enabling real-time decision-making from remote locations.

II. LITERATURE REVIEW

IoT technologies have increasingly been utilized in UAV systems to enhance their capabilities. Several studies

and projects have proposed integrating IoT for real-time monitoring, remote control, and data collection in UAV

applications. For Example: The use of IoT sensors to gather environmental data and transmit it in real-time to

ground stations. Similarly, system where IoT connectivity enabled live video streaming and remote flight

control. Moreover, IoT integration in UAVs has facilitated advancements in autonomous flight, where IoT-based

communication networks enable UAVs to make real-time decisions by accessing and analysing cloud-based

data. Additionally, the challenges and benefits of incorporating IoT in UAV systems, such as improved security,

enhanced remote diagnostics, and better flight management. However, despite the advancements, challenges

such as Versatility, Monitoring, and energy consumption in IoT-enabled UAVs still remain.

This paper aims to address these challenges by proposing a novel IoT-based flight controller architecture that

mitigates some of these issues while maintaining real-time control and monitoring of UAVs.

III. METHODOLOGY
The architecture of the IoT-based flight controller consists of three primary components: the UAV hardware,

the IoT platform, and the user interface.

3.1 UAV Hardware

The UAV hardware includes the flight controller, sensors, communication modules, and power systems. The key

components are:

 Flight Controller: The flight controller manages the UAV's stabilization, navigation, and control systems,

typically including a gyroscope, accelerometer, and Barometer.

 Sensors: Various sensors (GPS, barometer, temperature, humidity) are integrated into the UAV to provide

real-time data on altitude, speed, battery health, and environmental conditions.

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:07/Issue:04/April-2025 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1920]

 Communication Modules: The UAV is equipped with wireless communication modules such as Wi-Fi,

LoRa, or cellular modules to transmit data to and from the IoT platform.

3.2 IoT Platform

The IoT platform acts as the intermediary between the UAV and the ground station. It receives data from the

UAV, processes it, and sends control commands back to the UAV. This platform can be hosted on Blynk,

Adafruit, etc.

Key features of the IoT platform include:

 Data Storage: Continuous data logging and storage for flight parameters, GPS coordinates, and sensor data.

 Remote Monitoring and Control: Web-based interfaces or mobile applications to monitor UAV status,

adjust flight parameters, and receive alerts for system failures.

3.3 User Interface

The user interface provides a way for operators to interact with the IoT-based flight control system. It can be a

mobile app or web-based dashboard that shows real-time data from the UAV, such as flight path, battery life,

sensor readings, and system health. This interface allows the operator to make adjustments in flight, such as

changing speed, altitude, or even performing an emergency landing.

IV. SYSTEM DESIGN AND IMPLEMENTATION

4.1 Hardware Design

For this study, we selected the Teensy Microcontroller due to its compatibility with various sensors and IoT

communication modules. The UAV was equipped with GPS, barometer, and temperature sensors to monitor

environmental conditions. The communication module chosen was a Wi-Fi module for real-time data

transmission to the IoT platform.

4.2 Software

We used Saga GIS that integrates Teensy with an LiDar. The software communicates with the Controller via

Cellular connection, extracting data from the flight controller and sending it to the Handheld Device.

 Real-Time Data Transfer: The UAV sends data such as altitude, velocity, battery health, and GPS

coordinates.

 User Interface: The web-based interface allows operators to view real-time UAV parameters and issue

commands remotely.

4.3 Communication Protocols

 We implemented MQTT (Message Queuing Telemetry Transport), a lightweight and efficient protocol

suitable for IoT communication. MQTT is used to transmit telemetry data from the UAV to the cloud and to

receive control commands from the user interface.

V. FIRMWARE AND SOFTWARE DEVELOPMENT

5.1 Programming the Teensy Microcontroller

The Teensy microcontroller is a powerful choice for UAV applications due to its high processing speed, real-

time capabilities, and extensive peripheral support. Programming the Teensy involves setting up the

development environment, selecting the appropriate programming languages, and utilizing necessary libraries.

Development Environment

 Arduino IDE with Teensyduino Add-on: Provides a simple interface for programming and uploading code.

 PlatformIO: A more advanced environment that supports additional debugging and version control.

 VS Code + GCC Toolchain: Used for more in-depth firmware development with direct hardware access.

Programming Languages

 C/C++: The primary languages used for embedded systems programming due to their efficiency and control

over hardware.

 Assembly: Occasionally used for low-level optimization and performance-critical operations.

Libraries and Frameworks

 Teensyduino Libraries: Provide functions for interfacing with hardware components.

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:07/Issue:04/April-2025 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1921]

 FreeRTOS: Supports real-time task management.

 i2c_t3, SPI, and Serial Libraries: Essential for sensor communication and data exchange.

Code Structure and Best Practices

 Modular Programming: Breaking down firmware into reusable functions and libraries.

 Interrupt-Driven Design: Efficient use of hardware interrupts for real-time responsiveness.

 Code Optimization Techniques: Reducing memory footprint and execution time through compiler

optimizations.

5.2 Real-Time Operating Systems (RTOS) vs. Bare-Metal Programming

Firmware for flight controllers can be developed using either RTOS or bare-metal programming.

RTOS-Based Approach

 Allows multitasking, handling multiple operations concurrently.

 Provides scheduling mechanisms to ensure time-sensitive tasks are executed properly.

 Examples: FreeRTOS, ChibiOS

 Used for mission-critical applications requiring deterministic response times.

Bare-Metal Programming

 Directly manipulates hardware registers for optimized performance.

 More challenging to manage concurrent processes.

 Requires efficient handling of interrupts and state machines.

 Suitable for applications where performance and minimal overhead are priorities.

5.3 Sensor Data Acquisition and Processing

IMU Data Processing

 Communication Protocol: I2C or SPI is used to interface with the IMU.

 Data Fusion Techniques: Kalman Filter or Complementary Filter is used to merge accelerometer and

gyroscope data for accurate orientation.

 Sampling Rate Considerations: Ensuring high-frequency sampling to maintain flight stability.

LiDAR Data Handling

 Data Parsing: LiDAR typically communicates via UART/SPI.

 Noise Filtering: Statistical and AI-based filtering techniques remove outliers and inaccuracies.

 Point Cloud Processing: Converting raw LiDAR data into a usable 3D point cloud representation.

GPS Data Integration

 NMEA Sentence Parsing: Extracts latitude, longitude, altitude, and velocity information.

 Sensor Fusion: Combines GPS with IMU data for precise positioning.

 DGPS (Differential GPS): Uses correction signals to improve GPS accuracy for UAV applications.

5.4 Flight Control Software Design

 State Machines: Used for handling different flight modes (takeoff, hover, navigation, landing).

 Interrupt Handling: Ensures real-time responsiveness to sensor data.

 Data Logging: Logs flight data for post-flight analysis and debugging.

 Failsafe Mechanisms: Implementing watchdog timers and redundancy for critical operations.

5.5 Software Testing and Debugging

 Simulation Environments: Gazebo and MATLAB simulations for testing algorithms.

 Hardware-in-the-Loop (HIL) Testing: Integrating real hardware with simulation for accurate results.

 Debugging Tools: JTAG, Serial Monitor, and Logic Analyzers for troubleshooting firmware issues

 Automated Testing Frameworks: Unit testing and integration testing for ensuring firmware reliability.

5.6 Security Considerations in Firmware Development

 Firmware Encryption: Prevents unauthorized modifications to the flight controller’s software.

 Secure Bootloader Implementation: Ensures that only verified and signed firmware updates can be applied.

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:07/Issue:04/April-2025 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1922]

 Data Integrity Checks: Uses cryptographic hashing to validate data integrity during communication.

 Secure Communication Protocols: Using AES encryption for telemetry and control data exchange

VI. FLIGHT STABILIZATION

6.1 PID Implementation for Drone Attitude Control

In drone applications, separate PID controllers are typically implemented for:

 Roll Control: Stabilizes rotation around the front-to-back axis

 Pitch Control: Manages rotation around the side-to-side axis

 Yaw Control: Handles rotation around the vertical axis

 Altitude Control: Maintains desired height

6.2 Motor Control and ESC Interfacing

Effective motor control translates stabilization algorithms into physical motion through Electronic Speed

Controllers (ESCs).

Brushless DC Motor Fundamentals

Operating Principles:

 Three-phase design with permanent magnets

 Electronic commutation replaces mechanical commutators

 High efficiency and power-to-weight ratio

Motor Parameters for Drone Selection:

 KV rating: RPM per volt (lower for larger props)

 Maximum current draw

 Torque characteristics

 Dynamic response

VII. CONCLUSION

The integration of IoT into UAV flight controllers significantly enhances the capabilities of UAVs, allowing for

better monitoring, real-time adjustments, and cloud-based decision-making. This paper demonstrated a

working model of an IoT-based flight controller, highlighting the benefits of cloud integration for remote

operation, real-time analytics, and data storage.

Future work will focus on optimizing communication protocols for lower power consumption, improving

security measures to safeguard data transmission, and expanding the system to support multiple UAVs in a fleet

management system.

VIII. REFERENCES
[1] Author et al. (2018). "IoT and UAVs: Real-time Monitoring and Control Systems". Journal of Aerospace

Engineering, 33(2), 45-56.

[2] Author et al. (2020). "Cloud-based Control of UAVs Using IoT Platforms". International Journal of

Robotics and Automation, 18(4), 212-224.

[3] Author et al. (2019). "Enhancing Autonomous UAVs with IoT: A Study". Journal of Intelligent Systems,

14(3), 131-145.

[4] Author et al. (2021). "IoT Integration in UAVs: Challenges and Opportunities". IEEE IoT Journal, 8(5),

300-312.

