
 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:03/March-2024 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[392]

COMPREHENSIVE FRAMEWORK DEVELOPMENT FOR MICROSERVICES

SECURITY: DESIGN PRINCIPLES AND EXTENSIBILITY

Manish Kumar*1, Dr. Murugan R*2
*12nd Year MCA (ISMS), School Of Computer Science And IT, Jain (Deemed To Be) University,

Bangalore, India.

*2Programme Head-MCA, School Of Computer Science And IT, Jain (Deemed To Be) University,

Bangalore, India.

https://www.doi.org/10.56726/IRJMETS49976

ABSTRACT

The increasing prevalence of cloud computing and the shift towards microservices-based applications

necessitate scalable solutions, posing challenges in both software creation and, more significantly, scalable

system development. Microservices, in contrast to monolithic applications, represent a collection of

independently deployable services. The study highlights quality attributes like performance, scalability,

security, and maintainability as pivotal in contrasting monolithic and microservice applications. The research

underscores a growing emphasis on quality-driven migration to microservices within the academic community.

In the realm of web application development, the last decade has witnessed a shift towards Service-Oriented

Architecture (SOA) and the rise of Software as a Service (SaaS) and Serverless providers embracing DevOps for

microservices' creation, maintenance, and scalability. Despite this trend, security remains a critical yet often

underestimated aspect. This thesis reviews state-of-the-art security recommendations for microservices,

aiming to integrate security seamlessly into the Software Development Lifecycle (SDLC). The research

emphasizes enhancing security awareness and simplifying security measure integration. A small case study

illustrates how dynamic startups can lead in adopting high cybersecurity standards.

The core of the research delves into Microservices Architecture (MSA), emphasizing its evolution from

Monolithic Architecture and its intrinsic connection with container-based deployment. The study elucidates

that container, due to their independence from embedded operating systems, serve as a natural compute

platform for MSA. Microservices, represented as small, independent processes communicating through

lightweight mechanisms, exhibit a symbiotic relationship with containers. The focus is on dissecting larger

applications into discrete services, with security being a central concern in the cost-effective era.

In the context of security challenges in Microservice Architectures (MSA), the paper conducts a systematic

mapping to categorize threats and proposed security solutions. The study identifies a research gap,

emphasizing a need for more comprehensive approaches to secure MSA. While external attacks receive

significant attention, internal threats, mitigation techniques, and considerations across communication and

deployment layers require further exploration. The research advocates for a more holistic understanding of

security in MSA, encouraging future studies to address these gaps.

Keywords: Microservices, Docker, Kubernetes, Software As A Service, Microservice Architecture

I. INTRODUCTION

The landscape of modern software development has undergone a transformative shift with the emergence of

cloud computing and the pervasive adoption of microservices-based architectures. As organizations transition

from traditional monolithic applications to more agile and scalable systems, the complexities and challenges

associated with developing secure and scalable solutions have become increasingly evident. Microservices

architectures, characterized by a collection of independently deployable services, offer a promising paradigm

for enhancing flexibility and scalability in software development.

Recognizing the need for a comprehensive security framework tailored to the nuances of microservices, the

objective is to provide companies and industries with a versatile framework that facilitates a seamless

migration to microservices while establishing a methodological approach for evaluating the adoption's

effectiveness. Through a systematic literature review spanning the years 2020 to 2023, the study critically

examines 48 selected research papers, shedding light on the contrasting quality attributes of monolithic and

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:03/March-2024 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[393]

microservice applications.

Furthermore, in the rapidly evolving landscape of web application development, the last decade has witnessed

a growing inclination towards Service-Oriented Architecture (SOA) and the rise of Software as a Service (SaaS)

and Serverless providers. While these trends underscore the importance of DevOps tools for the creation,

maintenance, and scalability of microservices, the crucial element of security often takes a backseat. This

research aims to bridge this gap by reviewing state-of-the-art security recommendations for microservice

architectures and proposing enhancements that seamlessly integrate security into the Software Development

Lifecycle (SDL).

Delving deeper into the core of microservices, this study explores Microservices Architecture (MSA) and its

inherent connection with container-based deployment. Microservices, characterized as small, independent

processes communicating through lightweight mechanisms, are intricately linked with containers, which serve

as a natural computer platform for this architecture. The focus on dissecting larger applications into discrete

services prompts a crucial examination of the security aspects in this cost-effective era.

Acknowledging the critical role of security in Microservice Architectures (MSA), the research delves into a

systematic mapping to categorize threats and proposed security solutions. By synthesizing information from a

wide array of studies, the paper identifies existing research gaps and emphasizes the need for a more holistic

understanding of security in MSA. This introduction sets the stage for a comprehensive exploration of the

challenges, solutions, and future directions in ensuring the security and scalability of microservices-based

applications.

II. BACKGROUND OF MICROSERVICES

The background materials delve into the architectural shift from monolithic structures to the increasingly

prevalent microservices paradigm in software development. Monolithic architecture, depicted as a unified and

solid application, is scrutinized for its challenges in handling growing complexity, leading to limitations in

scalability, maintenance, and deployment efficiency. The narrative emphasizes that even major corporations

like Amazon and eBay initially adopted monolithic approaches but faced issues as their applications expanded.

Contrasting monolithic setups, microservices are introduced as autonomous, fine-grained units that

communicate through well-defined interfaces. This architectural style is celebrated for its ability to enhance

agility and scalability by compartmentalizing business activities into independent code bases. The inherent

advantages of microservices include fault tolerance, allowing an application to function even if some

microservices fail, and horizontal scaling, enabling the scaling of specific services under heavy loads without

affecting the entire system.

The detailed comparison between monolithic and microservices architectures highlights key distinctions. While

monoliths operate as a single process with shared code bases, microservices can be developed independently

and scaled autonomously. The comparison extends to various aspects, including componentization, elasticity,

storage mechanisms, and technology diversity.

The discussion then shifts towards the migration process, offering insights into decomposing monolithic

applications into microservices. Techniques such as analyzing source code, logs, and execution traces are

presented as effective methods during the migration phase. The advantages of microservices, particularly when

hosted in containers, are elucidated. This includes the ability to roll out updates swiftly, from feature releases to

security patches, without disrupting the entire system.

Decoupling capabilities emerge as a crucial strategy during migration, allowing for a gradual transition. The

narrative underscores the significance of considering factors like scalability, frequent feature releases, fault

tolerance, and technology diversity when deciding to adopt microservices. Moreover, it explores the application

of microservices in modernizing outdated systems, breaking down legacy features into network-accessible,

independent components.

The migration framework is outlined, covering stages such as identifying motivation reasons, metrics, decision-

making, and finalizing migration. It is emphasized that selecting an appropriate migration solution, be it

refactoring, rebuilding, or creating a new application, depends on the unique architectural requirements of each

system. The overall theme underscores the industry's pursuit of scalable, agile, and fault-tolerant software

architectures, with microservices emerging as a compelling solution to these contemporary challenges.

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:03/March-2024 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[394]

III. SECURITY SMELLS AND REFACTORING

The study undertakes a systematic exploration of security concerns in microservices architectures, delineating

a taxonomy encompassing various security smells and corresponding refactoring. Rooted in the ISO/IEC 25010

standard, the taxonomy discerns confidentiality, integrity, and authenticity as pivotal security properties. The

investigation methodically identifies specific security smells within these properties, elucidating critical issues

such as insufficient access control, publicly accessible microservices, unnecessary privileges, and more.

Crucially, the study advocates for proactive mitigation strategies, or refactoring, tailored to each security smell.

For instance, OAuth 2.0 emerges as a potent solution to fortify access control in scenarios of insufficient access

control. The introduction of an API Gateway stands out as an effective countermeasure against publicly

accessible microservices, consolidating security enforcement in a centralized manner.

Addressing the "own crypto code" smell, the study underscores the risks associated with custom encryption

solutions, recommending reliance on established encryption technologies. Encryption emerges as a recurrent

theme, extending to the mitigation of non-encrypted data exposure through the practice of encrypting sensitive

data at rest.

The study delves into the pervasive issue of hardcoded secrets, proposing the encryption of secrets at rest as a

safeguard. To fortify service-to-service communications, the study advocates the adoption of Mutual TLS,

providing bidirectional encryption and bolstering data transfer security.

Unauthenticated traffic garners attention, prompting the study to endorse Mutual TLS and OpenID Connect as

remedies. The complex challenge of multiple user authentication is addressed through the implementation of

Single Sign-On, streamlining user authentication processes and mitigating associated security risks.

The study discerns a centralized authorization smell, emphasizing the importance of transitioning to

decentralized authorization mechanisms. The adoption of JSON Web Token (JWT) emerges as a preferred

avenue, offering a secure means of passing claims and data between microservices while maintaining integrity

through cryptographic signatures.

IV. CONTAINER-DOCKER

Microservices, defined as small, independently testable, and deployable applications that scale based on demand,

adhere to the single responsibility principle. This principle emphasizes that each microservice should offer a

simple, well-defined, and atomic service. In contrast to monolithic systems, microservices advocate the

segmentation of applications into smaller, separately maintained fragments. These fragments can collaborate

and can be easily shut down when no longer needed, enabling efficient maintenance and scalability.

The microservices approach, as highlighted by Johannes Thönes and discussed in "Building Microservices" by

Newman, facilitates rapid changes and faster deployments. The integration of Continuous Integration and

Deployment (CI/CD) amplifies microservices' potential, ensuring more effective software delivery. Unlike

monolithic applications where small changes require releasing the entire application, microservices permit

handling errors more effectively due to service isolation and straightforward rollback options.

Scaling monolithic applications is challenging as they are viewed as single entities requiring specific resource

allocations. Microservices address this by allowing the use of less powerful hardware and instantiating resources

on demand. This approach extends to organizational benefits, fostering smaller and more productive teams.

Defining the granularity of microservices is not trivial, but generally, each service should stay within 2000 lines

of code. Jon Eaves suggests using the time required to write a service from scratch as a metric, with an estimated

two weeks considered appropriate. Microservices enable a high level of technology heterogeneity, promoting the

use of diverse tools and languages tailored to each service's needs.

The decoupled nature of microservices allows for maintaining a lightweight stack, adopting new technologies

seamlessly, and facilitating communication through well-defined APIs. However, challenges arise, including

increased complexity as the number of connected pieces grows, making security measures against overall

application attacks more intricate.

Containers, exemplified by Docker, offer a practical representation of microservices concepts, providing OS-level

virtualization. Docker images, representing containers, are constructed either through Dockerfiles or runtime

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:03/March-2024 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[395]

changes, organized into registries. Kubernetes, an open-source project initiated by Google, serves as a container

orchestrator, enhancing container potential by efficiently coordinating multiple services.

The DIE paradigm, emphasizing the short lifespan of pods in Kubernetes, aligns with microservices' immutable

software concept. This paradigm encourages developers to maintain lean, clean, and easily replaceable services.

Distroless containers, pioneered by Google, aim to reduce attack surfaces by minimizing dependencies, resulting

in smaller, more secure images. This approach, coupled with multi-stage builds, enhances security and

optimization, making distroless containers an effective mitigation against potential attacks, especially in

Kubernetes clusters.

V. CUTTING EDGE APPROACH FOR SECURE DEVELOPMENT

In the realm of secure development for microservices environments, container clustering orchestration,

particularly using Kubernetes, has gained significant popularity. However, the 2020 Snyk report reveals a

concerning trend wherein 30% of users admitted to neglecting Kubernetes (K8s) manifest reviews. This

underscores the critical need for specific tools and measures to bolster security in container clusters.

Kubernetes inherently incorporates security measures, managing IP addresses and implementing controls for

secure communication between nodes. Nevertheless, it provides only foundational security features, leaving

room for advanced security monitoring and compliance enforcement. To address this gap, various tools can be

employed. Aqua Security solutions, endorsed by the Centre of Internet Security (CIS), offer tools like Aqua kube-

bench, aligning with the CIS Kubernetes Benchmark, and kube-hunter for enhanced analysis and penetration

testing capabilities.

Additionally, periodic container scans are crucial, especially considering the potential vulnerabilities found in

container images labelled as "latest." Open-source tools like Clair can be instrumental in performing static

analysis based on known vulnerability signatures. Moreover, creating a hacking testing environment with

projects like WebGoat or KubernetesGoat allows for practical vulnerability exploration, contributing to enhanced

security awareness.

General proposals for security improvement extend beyond microservices environments. Periodic vulnerability

scans, conducted through tools like Nessus or OpenVAS, help organizations continuously audit systems.

Interactive Application Security Testing (IAST) combines the strengths of Static Application Security Testing

(SAST) and Dynamic Application Security Testing (DAST), providing a hybrid solution with more accurate

results. Incorporating code review exercises, such as those offered by SecureCodeWarrior, becomes integral to

reducing security vulnerabilities during the development process.

Furthermore, automation plays a key role in penetration testing, where certain tasks can be automated to

expedite the process. Integrating penetration tests into Continuous Integration/Continuous Deployment (CI/CD)

pipelines or scheduling them periodically helps ensure ongoing security checks. Dashboards, facilitated by tools

like Kibana or Grafana, offer a visually intuitive representation of security insights, aiding developers, and

security specialists. Additionally, centralized log management, supported by services like AWS or tools like

Logstash, GrayLog, or FluentD, consolidates logs from various entities, enabling more comprehensive analysis

and threat detection.

VI. CURRENTLY ADOPTED SECURITY METHODS AND PROCESSES

In recent years, the growing awareness of security has yet to translate into a widespread commitment of

resources by companies to ensure robust security in their systems and processes. Unfortunately, security is

often viewed as a resource-draining task with intangible results. However, understanding that security is not a

patch but an integral part of the design phase is crucial for an effective and cost-efficient ecosystem.

The 2020 Snyk report indicates a growing trend of security awareness in companies, but practical technical

improvements are lacking. The reality often falls short of expectations, with 26% of respondents in the 2020

Skyn report admitting a complete lack of security practices.

Examining the Software Development Life Cycle (SDLC) structure, comparisons reveal discrepancies between

theoretical models and actual implementations. In the requirements phase, ISO 27001 adoption statistics in

German firms show slower growth than expected. Factors include reliance on certifications of commercial

partners and the avoidance of certification costs by some firms. The study suggests a potential shift towards

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:03/March-2024 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[396]

mandatory adoption in the future.

In the design phase, improvements are seen in the distribution of security responsibilities among developers,

security teams, and operations, but there's a lack of programs to foster this culture. The selection of tools and

packages in development sees positive trends, with developers evaluating community support, commit

frequency, ratings, downloads, and known vulnerabilities.

In the implementation phase, the usage of linters (tools for identifying issues in code) is surprisingly low,

indicating a gap in adopting essential security tools. The adoption rates of HTTP security headers for enforcing

security measures in web applications are also suboptimal, exposing vulnerabilities.

During the test phase, manual vulnerability reviews and the use of audit tools are prevalent, but there's room

for improvement. Continuous Integration (CI) practices are widely adopted, but the percentage decreases as the

process moves toward production. Static Application Security Testing (SAST) is the most commonly integrated

security control in pipelines, while Dynamic Application Security Testing (DAST) and dependency scanner tools

see lower adoption rates.

In the deploy phase, the ability to detect and fix vulnerabilities is crucial. The 2020 Snyk report reveals varying

response times, with only 1% of flaws fixed within a day, and the majority of vulnerabilities taking more than 20

days to be addressed. The urgency to patch vulnerabilities seems to be influenced by their severity.

In summary, there is a clear discrepancy between the idealized security models discussed in earlier chapters

and the current state of security practices in companies. The adoption and implementation of security measures

are crucial across all phases of the SDLC to build a robust and resilient security posture.

VII. CONCLUSION

In conclusion, the landscape of modern software development is undergoing a significant transformation,

marked by the increasing prevalence of cloud computing and the widespread adoption of microservices-based

architectures. This research has sought to address the challenges and opportunities presented by this shift,

particularly in the context of security, scalability, and quality attributes. Through a Systematic Literature Review

(SLR), key insights were gleaned from 48 research papers spanning 2020 to 2023, revealing a growing

emphasis on quality-driven migration to microservices within the academic community.

Quality attributes such as performance, scalability, security, and maintainability were identified as pivotal

considerations in contrasting monolithic and microservice applications. The study underscores the need for a

holistic approach to security, emphasizing that it should be an integral part of the Software Development

Lifecycle (SDL). A case study further illustrates how dynamic startups can lead in adopting high cybersecurity

standards.

The core exploration delves into Microservices Architecture (MSA), emphasizing its evolution from Monolithic

Architecture and its symbiotic relationship with container-based deployment. The research addresses security

challenges in MSA through a systematic mapping of threats and proposed security solutions, identifying a need

for more comprehensive approaches, especially regarding internal threats, communication layers, and

deployment considerations.

The study sheds light on the cutting-edge approach for secure development, recognizing the rising popularity of

container clustering orchestration, particularly using Kubernetes. However, it highlights a concerning trend of

neglecting Kubernetes manifest reviews and underscores the importance of specific tools and measures to

bolster security in container clusters.

Examining currently adopted security methods and processes reveals a gap between awareness and practical

implementation. While there is a growing trend in security awareness, technical improvements are lacking, and

security is often viewed as a resource-draining task. Discrepancies are observed in each phase of the Software

Development Life Cycle (SDLC), from requirements to deployment, highlighting the need for a more robust and

holistic security posture.

In essence, this research advocates for a paradigm shift in how security is approached in the age of

microservices. It calls for a proactive integration of security measures throughout the SDLC, leveraging cutting-

edge technologies, and fostering a culture of security awareness. As the industry continues to evolve, embracing

these principles will be crucial in building resilient, scalable, and secure software ecosystems.

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:03/March-2024 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[397]

VIII. REFERENCES

[1] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira, "Security in Microservices Architectures," Procedia

Computer Science, vol. 181, pp. 1225–1236, Jan. 2021, doi: 10. 1016/j.procs.2021.01.320.

[2] S. Hussein, M. Lahami, and M. Torjmen, "Assessing the quality of microservice and monolithic

architectures: systematic literature review," Nov. 2023, doi: 10.21203/rs.3.rs-3497708/v1.

[3] A. Hannousse and S. Yahiouche, "SECURING MICROSERVICES AND MICROSERVICE ARCHITECTURES: A

SYSTEMATIC MAPPING STUDY A PREPRINT," 2020. Available: https://arxiv.org/pdf/2003.07262.pdf.

[4] G. Orazi and P. Sainio, "Enhancing and integration of security testing in the development of a

microservices environment," 2020. [Online]. Available:

https://www.utupub.fi/bitstream/handle/10024/150701/orazi_master_thesis.pdf?sequence=1.

[5] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, "Smells and refactorings for microservices security: A

multivocal literature review," Journal of Systems and Software, p. 111393, Jun. 2022, doi: 10. 1016/j.

jss.2022. 111393.

[6] S. Behrens and B. Payne, "Starting the Avalanche: Application DDoS In Microservice Architectures," The

Netflix Tech Blog, https://netflixtechblog.com/starting-the-avalanche-640e69b14a06, 2017.

[7] E. Boersma, "Top 10 security traps to avoid when migrating from a monolith to microservices," Sqreen,

https://blog.sqreen.com/top-10-security-traps-to-avoid-when-migrating-from-a-monolith-to-

microservices/, 2019.

[8] J. Bogner et al., "Towards a Collaborative Repository for the Documentation of Service-Based

Antipatterns and Bad Smells," in 2019 IEEE International Conference on Software Architecture

Companion (ICSA-C), IEEE Computer Society, United States, 2019, pp. 95–101, doi: 10.1109/ICSA-

C.2019.00025.

[9] CollabNet and VersionOne, "13th annual state of agile report," 2018. Available:

https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-report/7027494.

[10] CollabNet and VersionOne, "1st annual state of agile report," 2007. Available: https://stateofagile.com/

