

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

USED OLD CAR SELLING PRICE PREDICTION USING MACHINE LEARNING TECHNIQUES

Soham S. Ghume*1, Pranav V. Danavale*2, Tanvi N. Hagawane*3, Nikhil V. Shelar*4, Prathamesh S. Waghmode*5, Prof. Komal B. Babar*6

*1Computer Engineering, Zeal Polytechnic, Pune, Maharashtra, India.

*2,3,4,5,6Zeal Polytechnic, Pune, Maharashtra, India.

Abstract: India's automobile market is huge, with many people selling their used cars to new buyers as second or third owners. Platforms like Cars24, CarDekho, and OLX help connect sellers and buyers, but figuring out the right price for a used car is challenging. Machine Learning (ML) can help by using past car sales data to predict a fair price. In this case, Supervised Learning techniques, including Random Forest and Extra Tree Regression algorithms, were applied using the Scikit-Learn library. These algorithms proved to be highly accurate in predicting prices, regardless of the dataset size.

General Terms: Machine Learning, Artificial Intelligence, Data Mining.

Keywords: Used Car Selling Price Prediction Using. Logistic Regression, Lasso Regression, Heat Map, Angular Framwork.

I. INTRODUCTION

Predicting the price of a used car, which doesn't have the standard pricing of a new vehicle directly from the factory, is indeed a multi-faceted and challenging task. The complexity arises from numerous factors like the car's age, model, condition, mileage, and even external factors like fluctuating fuel prices, which have increasingly become a concern in today's economic landscape. As the resale market for used cars grows, so does the need for accurate pricing mechanisms, because buyers and sellers are more reliant on these estimates to make informed decisions. In many cases, legal agreements between the two parties hinge on the estimated price of the car, which is why it's critical for these estimates to be as accurate as possible.

Accurate price prediction becomes even more significant as buyers are looking for a fair valuation that considers every aspect of the car, while sellers want to ensure they get the best possible price in a highly competitive market. Using data-driven methods like machine learning to predict prices with the highest precision not only builds trust in the process but also creates a more efficient marketplace where transactions can occur with greater confidence. In essence, the ability to predict used car prices accurately benefits all parties involved by ensuring that both the seller and buyer have a fair basis for their transactions, thus reducing disputes and increasing satisfaction in the buying and selling experience ccurate price prediction becomes even more significant as buyers are looking for a fair valuation that considers every aspect of the car, while sellers want to ensure they get the best possible price in a highly competitive market. Using data-driven methods like machine learning to predict prices with the highest precision not only builds trust in the process but also creates a more efficient marketplace where transactions can occur with greater confidence. In essence, the ability to predict used car prices accurately benefits all parties involved by ensuring that both the seller and buyer have a fair basis for their transactions, thus reducing disputes and increasing satisfaction in the buying and selling experience

Predicting the price of a car that is not coming directly from the factory is a complex and critical task, especially as the demand for used cars in the resale market continues to grow. This challenge has been further compounded by rising fuel prices, which add another layer of complexity for used car sellers. Both individuals and organizations often prefer to conduct transactions with legal agreements based on an estimated price, making it crucial to find an accurate and fair price estimation. Achieving a high degree of precision in predicting the actual price of a used car would not only benefit sellers but also give buyers confidence in the fairness of the transaction. By leveraging machine learning algorithms to predict prices with greater accuracy, it becomes possible to streamline the buying and selling process, ensuring both parties have a reliable basis for negotiation and decision-making so we had used the various supervised learning algorithms such as

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

1. LINER REGRESSION MODEL

1. Linear Regression:

Linear Regression is most used Machine Learning supervised algorithm which works on train to predict a well established output that is dependent on the input data. These algorithms generally trains the set and results the output. Regression Analysis is about a predictive modeling methodology that has a objective to investigate the relation ship between various input data. For simple regression problem (a single x and single y) the format model follows as

$$Y = B0 + B1*X$$

When we move on higher model and discuss on com plexity of the model that varies as per B0 and B1 Values.

Example: Weight =B0 +B1 * height

Using the coefficient values will help you predicting the Weight values as per the height which falls into Linear Regression model

II. LITERATURE SURVEY

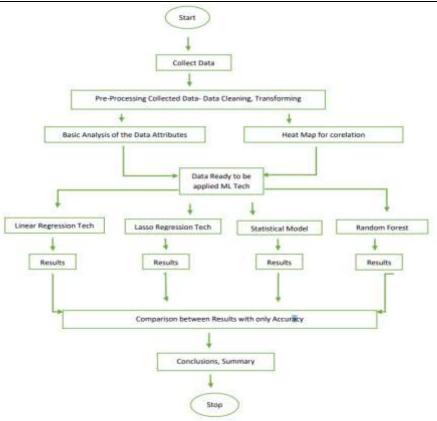
The price of a pre-owned car depends on various factors such as the model year, mileage, overall condition, and the equipment or features it possesses. With so many variables influencing the price, it becomes difficult to estimate it accurately using traditional rule-based algorithms. Instead, a more effective strategy is to employ inductive learning methods, which allow the system to learn from a dataset and predict the price based on the patterns within that data. This makes machine learning particularly suitable for this application.

In existing literature, for example, a study on the "Application of ML techniques to predict the price of preowned cars in Maharashtra" demonstrates a restricted field analysis within that region. However, the scope of this research extends far beyond simple geographic limitations. Another referenced paper discusses the use of Support Vector Machines (SVM) to achieve accurate price predictions. A third study explores the use of Big Data and artificial neural networks (ANN), which takes into account more complex and variable data for vehicles. In contrast, other papers focus primarily on traditional methods like Linear Regression, Ridge Regression, and Lasso Regression.

This research aims to broaden the comparative analysis by incorporating Random Forest algorithms alongside these other machine learning techniques. By extending the study to include a wider range of algorithms, the paper will offer a more comprehensive understanding of which methods provide the most accurate and reliable predictions for pre-owned car prices, particularly within the context of Maharashtra's used car market.

2.1 HARDWARE /SOFTWARE REQUIREMENTS:

Hardware requirements Operating system- Windows 7,8,10 Processor- dual core 2.4 GHz (i5 or i7 series Intel processor or equivalent AMD) RAM-4GB Software Requirements : Google Colab, Python Pycharm PIP 2.7 Jupyter Notebook Chrome.


III. METHODOLOGIES

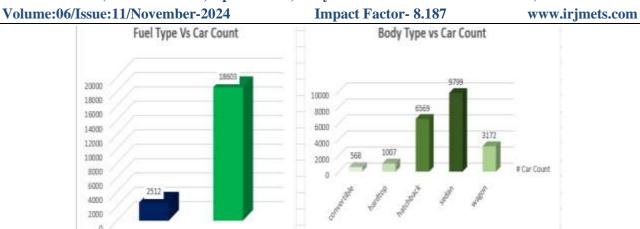
3.1 BACKGROUND: We started collecting the regular data by Kaggle and data crawled to prepare the data set for training which took almost one month and prior to this literature survey took 2-3 weeks and a team of 3 people have been contributed as follows. Mr Soham & Pranav, Prathamesh has contribud with Linear and Lasso regression techniques which consumed one additional month where the results were not much satisfied hence we got into a decision Model with all other co-authors where Mrs Tanvi & Nikhil has been contributed than linear regression results.

STEP WISE PROCESS FOR PURPOSED MODEL:

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

3.2 COLLECTED DATA SAMPLE:

Data have been collected over 20K Indian data samples where we have collected with various open source types and classified as below variables


Sr.No.	Variable Name Car	Description Name Of
1		Name Of
	2.7	rame Or
	Name	The Car
2	Year	Year Of Ve-
		hical
3	Selling	Selling Price
	Price	of the car
4	Km	Km Driven
	Driven	of the car
5	Fuel	Fuel of the
		car
6	Seller	Seller Type
	Туре	of the car
7	Owner	Owner of the
		car
8	Mileage	Mileage of
		the car
9	Engine	Engine of the
		car
10	Max	Max Power
	Power	the car
11	Seats	Seat of the
		car

3.3 BASIC DATA ANALYSIS & VISUALS

Data have been collected over 20K Indian data samples where we have collected with various open source types and classified as below variables

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)


This has been performed to understand very basic feasibility on the relation towards targeted price vs Fuel Type and Body Type and then we decided to follow heat map to find the better relation ship between target (Price) and dependent variables (all other)

IV. OUTPUTS WITH ACCURACY RESULTS

4.1 Linear Regression:

Applied Linear Regression Algorithms with Training Data Set and Testing data set results as followed: Linear Regression is a type of supervised machine learning algorithm which is used to predict the value of a dependent variable based on the value of another independent variable. Here the model finds the best fit linear line between the independent and dependent variable.

- 1. Data Sourcing, Data Understanding
- 2. Data cleaning, Manipulation, Visualization and Detecting Outliers
- 3. Perform EDA on Prepared Dataset (Univariate and Bivariate Analysis)
- 4. Model Preparation
- 5. Training and Testing set Data Split
- 6. Model Building
- 7. Residual Analysis of the Train Data
- 8. Making Predictions
- 9. Model Evaluation

4.2 STATISTICAL MODEL:

ML includes random forests, recursive partitioning (CART), bagging, boosting, support vector machines, neural networks, and deep learning .This consists multiple iterations to get the better accuracy by removing one by one attributes that are not needed. Statistical modeling is the process of applying statistical analysis to a dataset. A statistical model is a mathematical representation (or mathematical model) of observed data.

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024

Impact Factor- 8.187

www.irjmets.com

4.3 REQUIRED DATA COLLETION:

A	8			E						К		M	
name	year	selling prik	km_driver	fuel	seller_typ	transmiss	iowner	mileage	engine	max_pow	torque	seats	
Maruti Sw	2014	450000	145500	Diesel	Individual	Manual	First Owne	23.4 kmpl	1248 CC	74 bhp	190Nm@		5
Skoda Rap	2014	370000	120000	Diesel	Individual	Manual	Second Ox	21.14 kmg	1498 CC	103.52 bh	250Nm@		5
Honda Cit	2006	158000	140000	Petrol	Individual	Manual	Third Own	17.7 kmpl	1497 CC	78 bhp	12.7@ 2.7	V	5
Hyundai I	2010	225000	127000	Diesel	Individual	Manual	First Owne	23,0 kmpl	1396 CC	90 bhp	22.4 kgm a		5
Maruti Sw	2007	130000	120000	Petrol	Individual	Manual	First Owne	16.1 kmpl	1298 CC	88.2 bhp	11.5@ 4,5	6.	5
Hyundai X	2017	440000	45000	Petrol	Individual	Manual	First Owne	20.14 kmg	1197 CC	81.86 bhp	113.75nm		5
Maruti We	2007	96000	175000	LPG	Individual	Manual	First Owne	17.3 km/k	1061 CC	57.5 bhp	7.8@ 4,50		5
Maruti 80	2001	45000	5000	Petrol	Individual	Manual	Second Ov	16.1 kmpl	796 CC	37 bhp	59Nm@ 2		4
Toyota Eti	2011	350000	90000	Diesel	Individual	Manual	First Owne	23.59 kmg	1364 CC	67.1 bhp	170Nm@		5
Ford Figo	2013	200000	169000	Diesel	Individual	Manual	First Owne	20.0 kmpl	1399 CC	68.1 bhp	160Nm@		5
Renault D	2014	500000	68000	Diesel	Individual	Manual	Second Ov	19.01 kmg	1461 CC	108.45 bh	248Nm@		5
Maruti Zer	2005	92000	100000	Petrol	Individual	Manual	Second Ov	17.3 kmpl	993 CC	60 bhp	78Nm@ 4	1	5
Maruti Sw	2009	280000	140000	Diesel	Individual	Manual	Second Ox	19.3 kmpl	1248 CC	73.9 bhp	190Nm@		5
Maruti Sw	2007	200000	80000	Petrol	Individual	Manual	Second Ov	vner					
Maruti W	2009	180000	90000	Petrol	Individual	Manual	Second Ov	18.9 kmpl	1061 CC	67 bhp	84Nm@ 3		5
Mahindra	2016	400000	40000	Petroi	Individual	Manual	First Owne	18.15 kmg	1198 CC	82 bhp	115Nm@		5
Maruti Ert	2016	778000	70000	Diesel	Individual	Manual	Second Ov	24.52 kmg	1248 CC	88.5 bhp	200Nm@		7
Hyundai i	2012	500000	53000	Diesel	Individual	Manual	Second Ov	23.0 kmpl	1396 CC	90 bhp	22.4 kgm i		5
Adameri die	F 2002	150000	20000	Dates	Individual	Adamust	Second On	19.7 kmml	795.CC	45.2 hbn	63Nm@3		- 5

Next Attribute to be removed as " Cars name" into number

								K		M
name	year	selling prik	m_driver fuel	seller_typ-transmis	si owner	mileage	engine	max_pow	torque	seats
Maruti Sw	2014	450000	145500 Diesel	Individual Manual	First Own	n∈23.4 kmpl	1248 CC	74 bhp	190Nm@	
Skoda Rag	2014	370000	120000 Diesel	Individual Manual	Second C	21.14 kmg	1498 CC	103.52 bh	250Nm@	
Honda Cit	2006	158000	140000 Petrol	Individual Manual	Third Ow	m17.7 kmpl	1497 CC	78 bhp	12.7@ 2,7	E 3
Hyundai i	2010	225000	127000 Diesel	Individual Manual	First Own	ne 23.0 kmpl	1396 CC	90 bhp	22.4 kgm a	
Maruti Sw	2007	130000	120000 Petrol	Individual Manual	First Own	ne 16.1 kmpl	1298 CC	88,2 bhp	11.5@ 4,5	
Hyundai X	2017	440000	45000 Petrol	Individual Manual	First Own	ne 20.14 kmp	1197 CC	81.86 bhp	113.75nm	
Maruti W	2007	96000	175000 LPG	Individual Manual	First Own	ne 17.3 km/k	1061 CC	57.5 bhp	7.8@ 4,50	
Maruti 80	2001	45000	5000 Petrol	Individual Manual	Second C	16.1 kmpl	796 CC	37 bhp	59Nm@ 2	16 9
Toyota Eti	2011	350000	90000 Diesel	Individual Manual	First Own	ne 23.59 km	1364 CC	67.1 bhp	170Nm@	
Ford Figo	2013	200000	169000 Diesel	Individual Manual	First Own	n∈20.0 kmpl	1399 CC	68.1 bhp	160Nm@	
Renault D	2014	500000	68000 Diesel	Individual Manual	Second C	19.01 kmp	1461 CC	108.45 bh	248Nm@	
Maruti Ze	2005	92000	100000 Petrol	Individual Manual	Second C	0 17.3 kmpl	993 CC	60 bhp	78Nm@ 4	
Manuti Sw	2009	280000	140000 Diesel	Individual Manual	Second C	3 19.3 kmpl	1248 CC	73.9 bhp	190Nm@	
Maruti Sw	2007	200000	80000 Petrol	Individual Manual	Second C	Owner				
Maruti W	2009	180000	90000 Petrol	Individual Manual	Second C	3 18.9 kmpl	1061 CC	67 bhp	84Nm@ 3	S 3
Mahindra	2016	400000	40000 Petroli	Individual Manual	First Own	n∈ 18.15 kmp	1198 CC	82 bhp	115Nm@	
Maruti Ert	2016	778000	70000 Diesel	Individual Manual	Second C	0 24.52 kmp	1248 CC	88.5 bhp	200Nm@	- 3
Hyundai i	2012	500000	53000 Diesel	Individual Manual	Second C	0v23.0 kmpl	1396 CC	90 bhp	22.4 kgm a	
S. S. rednes of P. Sun	-3003	150000	90000 Patrol	Individual Manual	Second C	10 75 mm	705.00	AC Thhm	63Nm th 3	

Next"Year"

A	1.	C	₽ €			7 K		M
name	year	selling or	km_driver fuel	seller_typ-transmiss	i owner mileage eng	gine max powr	torque	seats
Maruti Se	v 2014	450000	145500 Diesel	Individual Manual	First Owns 23.4 kmpl 129	18 CC 74 bhp	190Nm@	5
Skoda Ras	2014	370000	120000 Diesel	Individual Manual	Second Ox 21.14 kmp 14	16 CC 103.52 bh	250Nm@	. 5
Honda Cit	2006	158000	140000 Petrol	Individual Manual	Third Own 17,7 kmpl 140	97 CC 78 bhp	12.7@ 2,7	. 5
Hyundai i	2010	225000	127000 Diesel	Individual Manual	First Owne 23.0 kmpl 135	96 CC 90 bhp	22.4 kgm s	. 5
Maruti Sw	v 2007	130000	120000 Petrol	Individual Manual	First Owns 16.1 kmgl 125	98 CC 88.2 bhp	11.5@ 4,5	. 5
Hyundai 3	2017	440000	45000 Petrol	Individual Manual	First Owne 20.14 kmp 115	97 CC 81.86 bhp	113.75nm	
Maruti W	2007	96000	175000 LPG	Individual Manual	First Own: 17.3 km/k; 106	51 CC 57.5 bhp	7.8(0 4,50	5
Maruti 80	2001	45000	5000 Petrol	Individual Manual	Second Ov16.1 kmpl 796	SCC 37 bhp	59Nm@ 2	
Toyota Et	2011	350000	90000 Diesel	Individual Manual	First Own; 23,59 kmp 138	54 CC 67.1 bhp	170Nm@	5
Ford Figo	2013	200000	169000 Diesel	Individual Manual	First Owns 20,0 kmpl 135	99 CC 68.1 bhp	160Nm@	. 5
Renault D	2014	500000	68000 Diesel	Individual Manual	Second 0x19.01 kmp 146	51 CC 108.45 bh	248Nm@	. 5
Maruti Ze	2005	92000	100000 Petrol	Individual Manual	Second 0x17.3 kmpl 993	CC 60 bhp	78Nm@ 4	. 5
Maruti Se	v 2009	280000	140000 Diesel	Individual Manual	Second Os 19.3 kmpi 12/	48 CC 73.9 bbp	190Nm@	. 5
Maruti Sv	v 2007	200000	80000 Petrol	Individual Manual	Second Owner			
Maruti W	2009	180000	90000 Petrol	Individual Manual	Second Os 18.9 kmpl 106	SICC 67 bhp	84Nm@3	
Mahindra	2016	400000	40000 Petrol	Individual Manual	First Owne 18.15 kmp 115	18 CC 82 bhp	115Nm@	. 5
Maruti Eri	t 2016	778000	70000 Diesel	Individual Manual	Second Ox 24.52 kmp 124	48 CC 88.5 bhp	200Nm@	7
Hyundai i	2012	500000	S3000 Diesel	Individual Manual	Second Ov 23.0 kmgl 139	96 CC 90 bhp	22.4 kgm i	. 5
Manuel At	3001	150000	90000 Petrol	Individual Manual	Second O. 19 Threat 191	ACC 46.330m	Chimina	

Next"selling Price"

	. 8				G				. K		
name	year	selling_pri	km_driver fuel	seller_typ	transmiss	owner	mileage	engine	max_pow	torque	seats.
Maruti Sw	2014	450000	145500 Dies	Individual	Manual	First Own	ni 23.4 kmpl	1248 CC	74 bhp	190Nm@	. 5
Skoda Rag	2014	370000	120000 Diesi	el Individual	Manual	Second C	3v21.14 kmg	1498 CC	103.52 bh	250Nm@	. 5
Honda Cit	2006	158000	140000 Petro	of Individua	Manuel	Third Ow	m 17.7 kmpl	1497 CC	78 bhp	12.7@ 2.7	. 5
Hyundai i	2010	225000	127000 Dies	el Individua	Manual	First Own	14 23.0 kmpl	1396 CC	90 bhp	22.4 kgm a	. 5
Maruti Sw	2007	130000	120000 Petro	of Individual	Menuel	First Own	or 16.1 kmpl	1298 CC	88.2 bhp	11.5@ 4.5	
Hyundai X	2017	440000	45000 Petro	Individual	Manual	First Own	ne 20.14 kmg	1197 CC	81.86 bhp	113.75nm	
Maruti Wi	2007	96000	175000 LPG	Individual	Manual	First Own	nc17.3 km/k	1061 CC	57.5 bhp	7.8@ 4.50	. 5
Maruti 80	2001	45000	5000 Petro	ledividus	Manual	Second C	N 16.1 kmpl	796 CC	37 bhp	59Nm@ 2	- 4
Toyota Eti	2011	350000	90000 Diese	el Individual	Manual	First Own	ne 23.59 kmg	1364 CC	67.1 bhp	170Nm@	
Ford Figo I	2013	200000	169000 Dies	el Individual	Manual	First Own	ne 20.0 kmpl	1399 CC	68.1 bhp	160Nm@	. 5
Renault D	2014	500000	68000 Dies	el Individue	Manual	Second C	N 19.01 kmg	1461 CC	108.45 bh	248Nm@	. 5
Maruti Zer	2005	92000	100000 Petro	Individue	Manuel	Second C	17.3 kmpl	993 CC	60 bhp	78Nm@ 4	. 5
Maruti Sw	2009	280000	140000 Diesi	el Individua	Manual	Second C	> 19.3 kmpl	1248 CC	73.9 bhp	190Nm@	5
Maruti Sw	2007	200000	80000 Petro	Individual	Manual	Second C	2wnet				
Maruti Wi	2009	180000	90000 Petro	d Individue	Manual	Second C	3 18.9 kmpl	1061 CC	67 bhp	84Nm@ 3	. 5
Mahindra	2016	400000	40000 Petro	Individual	Manual	First Own	ne 18.15 kmg	1198 CC	82 bhp	115Nm@	5
Maryti Ert	2016	778000	70000 Dies	Individual	Manual	Second C	3x24.52 kmg	1248 CC	88.5 bhp	200Nm@	. 7
Hyundai i	2012	500000	53000 Dies	el Individual	Manual	Second C	3,23.0 kmpl	1396 CC	90 bhp	22.4 kgm i	. 5
Manuel Ale	_1001	150000	80000 Butto	d teathers	(Adamse)	Samuel C	5.10.71mm	796.00	46.3350	638 wit 5	

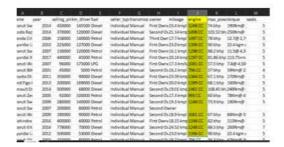
Next"Selling Type"

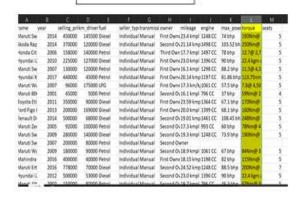
					. F								
name	year	selling pri	im driver	fuel	seller_typ-t	ransmissi	owner	mileage	engine	max_pow	vtorque	seets	
Maruti Sw	v. 2014	450000	145500	Diesei	Individual f	Jaunel	First Owne	23.4 kmpl	1248 CC	74 bhp	190Nm@		5
Skoda Rap	2014	370000	120000	Diesel	Individual f	vianual	Second Ov	21.14 kmg	1498 CC	103.52 bh	250Nm@		5
Honda Cit	2006	158000	140000	Petrol	Individual f	Manual.	Third Own	17.7 kmpl	1497 CC	78 bhp :	12.7@ 2.7	1	5
tyundal i	2010	225000	127000	Diesel	Individual f	Vanual	First Owne	23.0 kmpl	1396 CC	90 bhp	22.4 kgm		5
Manuti Sw	2007	130000	120000	Petroi	Individual I	Menual	First Owne	16.1 kmpl	1298 CC	88.2 bhp	11.5@ 4,5		5
Hyundai)	2017	440000	45000	Petrol	Individual I	Nanual	First Owne	20.14 kmg	1197 CC	81.86 bhp	113.75nm		5
Manuti W	2007	96000	175000	LPG	Individual I	Vianual -	First Owne	17.3 km/k	1061 CC	57.5 bhp	7.5@ 4.50		5
Maruti 80	2001	45000	5000	Petrol	Individual f	Namual	Second Ov	16.1 kmpl	796 CC	37 bhp	59Nm@ 2		4
Toyota Et	2011	350000	90000	Diesel	Individual I	danual	First Owns	23.59 km	1364 CC	67.1 bbp	170Nm@		5
Ford Figo	1 2013	200000	169000	Diesel	Individual f	decuel	First Owne	20:0 kmpl	1399 CC	68.1 bhp	160Nm@		5
Renault D	2014	500000	68000	Diesel	Individual f	Manual	Second Dr	19.01 kmg	1461 CC	108.45 bh	248Nm@		5
Manuti Ze	2005	92000	100000	Petrol	Individual f	Vanual	Second Ov	17.3 kmpl	993 CC	60 bhp :	78Nm@ 4		5
Manuti Sw	2009	280000	140000	Diesel	Individual f	Vianual	Second Ov	19.3 kmpl	1248 CC	73.9 bhp	190Nm@		5
Manuti Sw	2007	200000	80000	Petrol	Individual I	Manual	Second Ov	vner					
Manuti W	2009	180000	90000	Petrol	Individual I	Vianual	Second Ov	18.9 kmpl	1061 CC	67 bhp	84Nm@ 3		5
Mahindra	2016	400000	40000	Petrol	Individual I	vlanual:	First Owne	18.15 kmg	1198 CC	82 bhp	115Nm@		5
Manuti Eri	2010	778000	70000	Diesel	Individual I	Teunel	Second Ov	24.52 kmg	1248 CC	88.5 bhp	200Nm@		7
Hyundalii	2012	500000	53000	Diesel	Individual t	Manual	Second Ov	23.0 kmpl	1396 CC	90 bhp	22.4 kgm		5
Manual Sie	1003	150000	20000	Patrol	Individual I	Assurab	Second On	19-7 kmel	794.CC	45.1 kbs	538m#3		

Next"Fuel"

A	В	C	0	- 1	- F		н.	- 1	- 2	- K	- 1	M.	
name ye	101	selling pril	im_driver	fuel	seller typ	transmiss	awner.	mileage	engine	max_pow	torque	seats	
Maruti Sw	2014	450000	145500	Diesel	Individual	Manual	First Owne	23.4 kmpl	1248 CC	74 bhp	190Nm@		5
Skoda Rap	2014	370000	120000	Diesel	Individual	Manuel	Second Ox	21.14 kmg	1498 CC	103.52 bh	250Nm@		5
Honda Cit.	2006	158000	140000	Petrol	Individual	Manual	Third Own	17.7 kmpl	1497 CC	78 bhp	12.7@ 2,7		5
Hyundai ii	2010	225000	127000	Diesel	Individual	Manual	First Owns	23.0 kmpl	1396-CC	90 bhp	22.4 kgm a		5
Maruti Sw	2007	130000	120000	Petrol	Individual	Manual	First Owns	16.1 kmpl	1298 CC	\$8.2 bhp	115@45		5
Hyundai X	2017	440000	45000	Petrol	Individual	Manual	First Owns	20.54 kmg	1197 CC	\$1.86 bhg	113.75nm		5
Maruti Wi	2007	96000	175000	LPG	Individual	Manual	First Owne	17.3 km/k	1061 CC	57.5 bhp	7.8@ 4.50		5
Maruti 80	2001	45000	5000	Petroli	Individual	Manual	Second Ov	16.1 kmpl	796 CC	37 bhp	59Nm@ 2		4
Toyota Eti	2011	350000	90000	Diesel	Individual	Manual	First Owne	23:59 kmg	1364 CC	67.1 bhp	170Nm@		5
Ford Fign I	2013	200000	169000	Diesel	Individual	Manual	First Owne	20.0 kmpl	1399 CC	68.1 bhp	160Nm@		5
Renault Di	2014	500000	68000	Diesel	Individual	Manual	Second Ov	19.01 kmg	1461 CC	108.45 bh	246Nm@		5
Maruti Zer	2005	92000	100000	Petroli	Individual	Manual	Second Ox	17.3 kmpl	993 CC	60 bhp	78Nm@ 4		5
Maruti Sw	2009	280000	140000	Diesel	Individual	Manual	Second Ox	19.3 kmpl	1248 CC	73.9 bhp	190Nm@		5
Maruti Sw	2007	200000	80000	Petrol	Individual	Manual	Second Ov	iner					
Maruti Wi	2009	180000	90000	Petrol	Individual	Manual	Second Ox	18.9 kmpl	1061 CC	67 bhp	84Nm@ 3		5
Mahindra	2016	400000	40000	Petrol	Individual	Manual	First Owne	18.15 kmg	1198 CC	82 bhp	115Nm@		5
Maruti Ert	2016	778000	70000	Diesel	Individual	Manual	Second Ov	24.52 kmg	1248 CC	88.5 bhp	200Nm@		7
Hyundai li	2012	500000	53000	Diesel	Individual	Manual	Second Ov	23.0 kmpl	1396 CC	90 bhp	22.4 kgm (5
Manet Ale	-3003	110000	80000	Dated	Individual	Manual	Total Co.	10 Thered	200 00	46.2 hhn	£15(md) 5		1

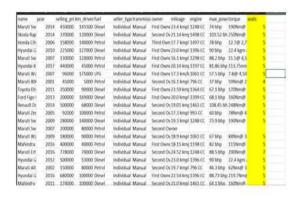
Next"Transmission"


International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)


Next"Owner"

		. 6	0 E	1	- 46	101	100	- 1K-		
name y	180	using pri	in divertise	selfer top tommis	si pemer	minuge	eogite -	max pow	tonquar	100/5
Maruti Sw.	2014	410000	145500 (Nexe)	Individual Manual	First Dans	GS.Allered	1248 CC	Title	1905mg	. 3
Skody Rep	3004	X10000	123000 Direct	Individual Manual	Second O	25.34 km	3498 CC	100.5216	2509mg	
Honda Cir.	2009	238000	140000 Petrol	Imdividual Manual	Third Der	17.Three	3497-00	T8199	127年北	7 . 3
Myondai E	3000	325000	127000 Dissail	Individual Manual	First Dans	distinu	3396-00	90 blo	02.4 kgm	8 3
Maruti Sw	2007	130000	1250000 Petrol	Individual Manual	First Den	dkilime	TIME OC	88.2 tmp	10.58 43	5: 5
Promobil 8	3057	4400000	45000 Pepul	Individual Manual	First Dem	00.345m	20 9811	\$1.50 bhp	1111.75mm	5
Manud Wil	2007	960000	175000 U/G	Individual Manual	First Dans	d2.Dimb	2014900	37.5 bhp	7.88 4.5	0 5
Marct 30	2000	45000	5000 Penul	Individual Manual	Second Co.	18.11mm	296-00	17 Mg	3000mgB	
Timota (1)	3000	1100000	50000 Decel	Individual Manual	First Dans	CHIPME	136600	47.1 line	1709md	
Ned Figs (3053	300000	189000 Diesel	Individual Manual	King Dans	distant	2399 CC	68110w	tsound	5
Retwit D.	3004	100000	68000 Desert	Individual Manual	Second O	SECTION	3468-DC	10545 W	2484m8	3
Maruti Zer	2005	92000	100000 Penul	Individual Manual	Second D	173 kmg	999-00	60 trip	Bing.	2 3
Maryti Sw	3009	380000	140000 Diesel	Individual Manual	Second O	15.Time	134600	75.95%	1905mg	
Maryll Sw	2007	200000	83000 Femal	Individual Manual	Second D	-				
Marytt Still	3009	380000	90000 Penul	Individual Manual	Second Di	All bear	2012/00	EPHip.	sping	1 1
Matindra	3015	4000000	#2000 Petrol	Individual Manual	First Date	TE Han	1196.00	\$2.95p	1194m#	
Manutifit	3016	779000	70000 Dissell	Individual Manual	Second O	26.52 km	134800	ML5 big	2005mg	
Myundal C	3012	500000	S1000 Diesel	metaldual Manual	Second O	2000	2206-00	100 tino	22.4 kgm	6 5
Many sa	3000	9550000h	\$2000 Served	Industrial Mineral	Same S	Agreement.	rest by	\$5.3 bits.	170mile	


Next"Mileage"


Next"Engine"

Next"Torque"

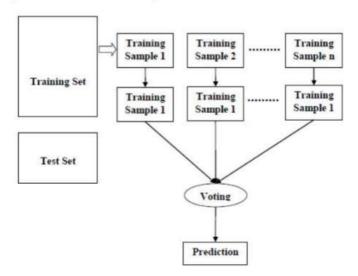
Next"Max Power"

Next"Seat"

4.4 RANDOM FOREST IMPLEMENTATIONS:

It is an ensemble method which is better than a single decision tree because it reduces the overfitting by averaging the result. We can understand the working of Random Forest algorithm with the help of following steps We can understand the working of Random Forest algorithm with the help of following steps –

- Step 1 First, start with the selection of random samples from a given dataset.
- Step 2 Next, this algorithm will construct a decision tree for every sample. Then it will get the prediction result from every decision tree.
- Step 3 In this step, voting will be performed for every predicted result.
- Step 4 At last, select the most voted prediction result as the final prediction result


International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024

Impact Factor- 8.187

www.irjmets.com

The following diagram will illustrate its working

BENEFITS:

- Overcomes the problem of overfitting of combining decision trees.
- · Works for large set of data
- This has less variance to single decision tree
- Proves high accuracy Implementing Random forest on last Statistics modeling resulted
- R score error: 0.9143581729539816 Accuracy: 91.435%

4.5 COMPARISON BETWEEN ALL RESULTS:

This comparative study evidence that application of "Random Forest with Statistical Modeling proved the better accuracy on old car price prediction over other supervised machine learning techniques

The current analysis has been done with open source data base but if could be improvised by association of "True Value" or similar industry player who can provide the recent actual data set to be trained and tested then that could result better class definition with greater accuracy.

V. CONCLUSION

The detailed study of the Machine Learning Techniques used with prediction of used Car Prices through various Supervised Learning approaches as Linear , Lasso, Statistical and Random forest model applied with Training and test set of data and Random forest over multiple iteration produced a great accuracy approx. 91.5% and it also leaves the further research methodologies to be applied as deep learning systems like ANN , B-Networks methodologies. This analysis definitely help the researcher and users widely on determination of prices for old cars in India.

The current analysis has been done with open source data base but if could be improvised by association of "True Value" or similar industry player who can provide the recent actual data set to be trained and tested then that could result better class definition with greater accuracy.

VI. REFERENCES

- "Used Car Price Predication Using Machine Learning Techniques"in Google Scholar on 2021 by Mrs Shyamali Das, Mr Ananta Laha, Mr Alok Jena, Ms Priyadarshini Samal.
- [2] "Car's Selling Price Prediction using Random Forest Machine Learning Algorithm." Abhishek Pandey, Vanshika Rastogi, Sanika Singh.