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ABSTRACT 

In the current era of rapid growth in Internet of Things (IoT) devices and the demand for low power, high 

efficiency computation solutions in edge computing have has encouraged research efforts in alternative 

arithmetic suitable for resource-constrained environments. This paper investigates the implementation in 

fixed-point arithmetic over edge devices to achieve more computational efficiency and comparatively less 

power consumption compared to floating-point arithmetic. Experiments were performed on three different 

hardware platforms which are PIC32MZ2048EFG, Node MCU 8266 and Raspberry Pi zero. The findings show 

that fixed-point arithmetic consumes 50% less energy and executes 66% faster in terms of processing speed 

with minor accuracy trade-offs. The paper further demonstrates that two or threefold reductions in training 

time and memory usage can be achieved at the expense of acceptable accuracy loss when examining the 

performance of MNIST dataset neural network models in fixed-point versus floating point computation. These 

findings of this paper highlight a significant lower cost on edge computing is reached via fixed-point instead of 

floating-point that allows AI deployment on devices with limited computation and storage resources. 
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I. INTRODUCTION 

Edge computing has proved to be an instrumental element in solving the challenges with processing and 

sending large amounts of data over long distances as it moves closer towards the edge of a network, where data 

is generated. This transition helps decrease latency, save bandwidth and enable fast decision-making for 

various Internet of Things (IoT) devices and embedded systems, particularly real-time applications [1]. On the 

other hand, due to power limits, memory costs and processing constraints of edge devices, hardware friendly 

arithmetic methods are also required to handle workloads. 

Floating-point is a common form of arithmetic in many computing applications, however it has limitations for 

edge devices due to its computational complexity and high power consumption. On the contrary, using fixed 

point simplifies the calculations due to its use of limited decimal places offers solution for low-power 

applications reducing energy requirements at the cost of decreased numerical precision. While prior work has 

shown that fixed-point formats can improve resource utilization and performance in areas such as signal 

processing and machine learning [2], a general comparison of the strengths and weaknesses of fixed-point 

across many different embedded applications has not been performed. 

The objective of this work is to present an extensive comparison between floating-point and fixed-point 

arithmetic performed in vector operations as well as in Neural Network inference through a sequence of 

experiments carried out on three different hardware platform PIC32MZ2048EFG, Node MCU 8266 and 

Raspberry Pi Zero and neural network models respectively. Floating-point versus fixed-point arithmetic affects 

speed, power consumption and memory usage but also accuracy. This will help by resolving the appropriate 

trade-offs between each arithmetic format, thus helping determine if a fixed-point method can be used to 

deploy AI models for devices that are constrained to very low-power and resource-constrained hardware. 

II. LITERATURE REVIEW 

The 1990s was the era of computing based on single or multiple CPU-based cores and companies like WinTel 

scaled its CPU centric architectures according to Moore law scaling rows of CPU cores and RAM to boost 

performance [3]. These CPUs improvements were great but they still fell short for the requirements of parallel 

processing needed in AI applications. The introduction of GPUs, initially developed for rendering graphics 

opened up a strong alternative with thousands of cores capable of executing parallel computations required in 

deep learning [4]. This transition was accelerated even more with NVIDIA development of CUDA programming 

language that optimized GPU for AI tasks [4]. Latest GPUs along with new plug and play accelerators such as 

Intel® Movidius™ Neural Compute Stick, Laceli AI compute sticks from Gyrfalcon Technology and Raspberry Pi 
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Model B are now the heart of high-performance AI infrastructure [5][6]. Even with these hardware 

improvements, we still need better algorithms and methods to make proper use of existing computational 

power. 

Neural network training can benefit from both algorithmic and hardware optimizations to fully maximize 

performance. Some of these Algorithmic optimizations are like AdaGrad which controls the learning rates based 

on previous gradients and RMSProp which adjusts the learning rate based on recent gradient information to 

reduce excessive fluctuations [8][9]. Another popular optimization method for the model tuning problem are 

population based optimization methods which simulate evolutionary processes [10]. Methods such as fixed-

point arithmetic are used to facilitate calculation by uniformly using a constant number of bits for 

representation (real value), which speeds up the process and requires less memory that can always be 

advantageous in embedded systems. 

In traditional computing environments, which are often cloud and central data-center based, systems have 

predominantly favored floating-point used for the precision needed for diverse numerical ranges have higher 

computational complexity and power consumption that is not suitable for an edge device. But edge devices 

usually work under strict power and resource constraints which makes them consider alternative arithmetic. 

On the other hand, fixed-point arithmetic uses a much simpler and faster method that preserves a fix number of 

digits both before and after the decimal point. This approach minimizes the processing load and energy 

consumption with a minimal accuracy loss as a trade-off. 

Edge computing reduces reliance on centralized networks by processing data on device, which can reduce 

latency and bandwidth issues [1]. Through this strategy, latency is minimized which is particularly important 

for real-time applications such as autonomous vehicles and medical monitoring [10]. Edge computing 

minimizes network traffic by sending only data that has been processed at the source itself and thus ease 

congestion much-needed for scaling systems to be cheaper. That improves the privacy as well by reducing data 

moving across networks especially useful in use cases like smart home and industrial IOT. 

Upcoming trends in edge computing focus on how modern infrastructure relies more on edge devices, lowering 

latency and increasing efficiency with applications such as smart cities, connected vehicles and smart grids. AI 

models are deployable on low-power devices via optimization techniques such as using fixed-point arithmetic, 

model compression and efficient inference algorithms [16]. Fixed-point optimization is being widely used in 

domains such as computer vision and NLP etc, making AI suitable for resource-constrained devices [11]. The 

deployment of machine learning in low-power circumstances by TinyML has turned fixed-point optimization 

into a key approach [12]. The development of hardware accelerators like Google’s TPUs and AI chips for edge 

computing such as Apple’s Neural Engine and Huawei’s Ascend AI processor have motivated the need for fixed 

point arithmetic [13][14][15].  

Running neural networks at the edge has brought to light an important tradeoff between model accuracy and 

computational efficiency. Recent years have seen the adoption of fixed-point arithmetic for neural network 

inference as it requires less memory and computation. Quantized models have been shown to operate quite 

well on embedded hardware with acceptable accuracy loss while using small-fixed-point representation. Hence, 

the fixed-point formats are widely used for performing AI models under a resource constraint setup. 

III. METHODOLOGY 

The experiments conducted in this study focused on evaluating the performance of floating-point and fixed-

point arithmetic using different embedded hardware platforms and neural network models. This section 

provides an overview of the hardware specifications, software setup and experimental procedures used to 

measure computational speed, power efficiency and accuracy across different arithmetic formats. 

Hardware Platforms 

Three embedded hardware platforms were selected to cover a range of computational capabilities and 

hardware constraints: 

1. PIC32MZ2048EFG Microcontroller 
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Table 1: Specifications of PIC32MZ2048EFG Microcontroller 

Specification Details 

Name PIC32MZ2048EFG 

Bus Peripheral: SPI, I2C, UART, CAN | System Bus: AHB 

Memory Program Flash: 2 MB, RAM: 512 KB 

Processor MIPS M14K core, 200 MHz, 32-bit, No hardware FPU 

Display No dedicated display controller, SPI/Parallel for external display 

Generic 

Features 

144-pin, 134 GPIOs, Multiple Timers, 48-channel ADC, Integrated Ethernet, Low 

power 

Storage No dedicated storage beyond program flash 

Other Details PWM channels, USB 2.0, High-performance embedded systems 

2. Node MCU 8266: 

Table 2: Specifications for Node MCU 8266 

Specification Details 

Name Node MCU 8266 

Bus Peripheral: SPI, I2C, UART | System Bus: Internal memory bus 

Memory Flash Memory: 4 MB, RAM: 64 KB instruction, 96 KB data 

Processor Tensilica Xtensa L106, 80 MHz (160 MHz possible), 32-bit 

Display No dedicated display, External via GPIO (SPI/I2C) 

Generic Features 11 GPIOs, Built-in Wi-Fi, Single 10-bit ADC, Power-efficient 

Storage Flash for code and data, No expandable storage 

Other Details PWM output, USB-to-Serial, Full TCP/IP stack, IoT applications 

3. Raspberry Pi Zero 

Table 3: Specifications for Raspberry Pi Zero 

Specification Details 

Name Raspberry Pi Zero 

Bus Peripheral: SPI, I2C, UART, USB OTG | System Bus: AMBA 

Memory RAM: 512 MB LPDDR2 

Processor Broadcom BCM2835, 1 GHz ARM11 core, ARMv6, Integrated FPU 

Display Mini HDMI port (1080p), DSI display interface 

Generic Features 40 GPIOs, HDMI and Composite video, Wireless (Zero W), CSI camera 

Storage MicroSD card slot for booting and storage 

Other Details USB OTG, Runs Linux-based OS, Integrated GPU for 1080p 

Software Environment 

The experiments implemented a combination of programming languages and development tools based on the 

particular hardware platform: 

 Programming Languages: C++ was used for low-level hardware interfacing to ensure optimal performance 

for operations. Python was adopted for building and testing neural network-based models. 

 Development Tools: Microchip MPLAB X IDE: In the experiment, the PIC32MZ2048EFG microcontroller 

was employed, programmed in a Microchip MPLAB X IDE environment using an XC32 Compiler. Once the 
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code was compiled, it was loaded into the microcontroller through a PICKit method. Since UART was 

implemented for data logging, it was possible to store and evaluate the outcomes in the future. Embedded 

timers within MPLAB were deployed for the purpose of taking time measurements, for instance ensuring 

that correct time was taken for vector addition. In the course of the experiment, a very accurate real-time 

power monitoring strategy was developed by attaching an INA219 Current Sensor to the power input of the 

microcontroller for power consumption measurements. 

 Arduino IDE: the NodeMCU 8266 was configured as an ESP8266 board in the Arduino IDE. The connection 

of the Node MCU via micro-USB facilitated the uploading of C++ code which streamlined the development 

process. Results in real time could be viewed through the Serial Monitor of the IDE. The execution time 

could be measured using the millis() function without causing latency in the microcontroller as it timed the 

elapsed time at an appropriate rate. Changes in the code did not affect power consumption, logged by a 

DROK USB Power Meter placed between the power supply and the NodeMCU; thus, the monitoring of power 

remained unaffected by the computing activities. 

 GNU Compiler Collection (GCC): For the purpose of compiling C++ programs on the Raspberry Pi Zero, it 

was accessed remotely using SSH or terminal. Detailed data gathering was performed by logging the output 

on the console directly to perform an analysis of the implementation. The duration of the performance was 

measured via the C++ chrono library which provided clear specification on the timing of carrying out the 

vector operations. Power draw was determined with the help of an external UM25C USB power meter 

positioned in-line between the power supply and the Raspberry Pi Zero to provide a clean and clear power 

draw measurement unobstructed by other processing activities. 

 TensorFlow and TensorFlow Lite for neural network experiments with additional quantization tools to 

facilitate fixed-point model deployment. 

Experimental Design 

The experimental design was divided into two major parts as follows; vector operations and neural network 

inference. Each component sought to evaluate the performance and accuracy of floating-point and fixed-point 

arithmetic in different data types, tasks and scenarios. 

1. Vector Operations 

The objective of the vector operations experiments is to evaluate the effect of various arithmetic representation 

formats on computational speed, power consumption and numerical accuracy. Vector addition was performed 

using five different data types which includes: double (64-bits precision floating point), float (32-bits precision 

floating point), fixed int (16 bits integer & 16 bits fraction), fixed short (8 bits integer & 8 bits fraction) and 

fixed char (4 bits integer & 4 bits fraction). In each operation, the number of elements was 10,000 and the 

operations were timed in milliseconds using internal timers affixed on the respective platforms. Power data 

was captured in milliwatts using external USB power meters to capture energy usage in real time during 

computations. Computational accuracy of fixed point arithmetic was investigated against its double precision 

floating points and variances in percentage of error were recorded for each numerical datatype. 

2. Neural Network Inference 

The objective of these experiments is to examine and investigate the effectiveness of floating-point and fixed-

point formats and what computation advantages and limitations can be observed in neural network inference 

tasks. A convolutional neural network (CNN) was developed based on the MNIST dataset, which contained 

training and 10,000 testing images of handwritten digits. The dataset was preprocessed and normalized for 

both floating-point and fixed-point experiments to ensure consistency. Floating-point model was developed 

incorporating the use of 64 bit precision. However, fixed point model was further quantized to 8 bit using full 

integer quantization of TensorFlow lite. Performance metrics included training time, validation loss, test 

accuracy and memory consumption. 

IV. RESULTS AND ANALYSES 

This section provides a thorough evaluation of the results of the experiments conducted with particular 

emphasis on the performance differences associated with computational speed, power consumption and 
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accuracy when using floating point and fixed point arithmetic. The discussion highlights the implications of 

these findings for embedded systems and edge computing. 

Vector Operations 

The results of the experiments are displayed in the format of bar charts that present a comparative analysis of 

the performance of the floating and fixed point arithmetic on the PIC32MZ2048EFG, NodeMCU 8266 and 

Raspberry Pi Zero after performing 10,000 operations in such aspects as vector addition time, power 

consumption and error percentage for different data types. Where floating point variables are colored blue 

while fixed point variables are colored orange. 

Final Values 

   

 

Figure 1, 2 & 3: 

The outcomes illustrated in Figure 1, 2 & 3 clearly illustrate that fixed-point arithmetic significantly improves 

time efficiency in comparison to floating-point arithmetic across all three platforms. Efficiency improvements 

range from 55.6% to 71.8% for fixed-point data types. In embedded systems where both computational speed 

and energy efficiency are essential, fixed-point arithmetic is the preferable choice over floating-point 

arithmetic.  

Computational Speed: 
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Figure 4, 5 & 6: 

The outcomes in figure 4, 5 & 6 demonstrate that fixed-point arithmetic significantly improves time efficiency 

in comparison to floating-point arithmetic across all three platforms. Efficiency improvements range from 

55.6% to 71.8% for fixed-point data types. In embedded systems where both computational speed and energy 

efficiency are essential, fixed-point arithmetic is the preferable choice over floating-point arithmetic. 

Power Consumption: 

      

 

Figure 7, 8 & 9: 

The results in figure 7, 8 & 9 demonstrate that fixed point arithmetic offers considerable energy efficiency 

benefits over floating point arithmetic for all three platforms studied. The power consumption for fixed point 

types as opposed to floating point types falls within a range of 40% to 50%. Such a notable reduction in power 

consumption illustrates how efficient the fixed point arithmetic is. 
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Precision: 

   

 

Figure 10, 11 & 12: 

The outcomes in figure 10, 11 & 12 show the average estimated error in percentage difference between 

floating-point and fixed-point variables is observed from 23% to 66%. Upon looking at the percentages of the 

errors, it can be noted that the floating point types exhibit the least double errors across all platforms though 

this is the only range where it has the highest accuracy. A similar examination using fixed-point types involves 

significantly higher error percentages, which portrays the cost of precision in speed. Floating point types are 

the most suitable in cases that require high level of precision. On the other hand, fixed-point types have the 

advantage of improved speed of processing but this is at the expense of a reduction in accuracy. 

Neural Network Inference: Accuracy and Resource Efficiency 

A comparative study of neural network training with floating-point and fixed-point formats indicates that fixed-

point arithmetic offers enhanced resource efficiency, achieving performance in accuracy that remains largely 

equivalent to that of floating-point arithmetic. The corresponding bar charts are presented below where bars in 

blue color represent floating point variable (64-bit) and bars in orange color represent fixed point variable (8-

bit).  

Training Time: 

 

Figure 13: 
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The figure 13 presents training time associated with the 64-bit floating-point model relative to the 8-bit fixed-

point model. The floating-point model completed the process in 348.67 seconds, whereas the fixed-point model 

achieved this in just 118.09 seconds. This represents a significant reduction of 66% in training time for the 

fixed-point model. 

Memory Usage: 

 

Figure 14 

Figure 14 shows the efficiency of memory usage realized with the 64bit floating-point model in comparison to 

the 8-bit fixed point model.  It can be seen that the fixed point model is much more efficient than its floating-

point counterpart. 925.80 MB of memory is occupied by the floating-point model but only 470.47 MB by the 

fixed-point model, which results in almost 50% memory space savings. This is due to the use of fixed-point 

model as opposed to floating-point model.  

Validation Loss and Test Loss: 

 

Figure 15 & 16: 

The figure 15 presents validation loss and figure 16 presents test loss of the 64-bit floating-point and the 8-bit 

fixed-point models. A comparison of the validation and test losses between the two models indicates that the 

floating-point model achieved a validation loss and test loss of 5.57%. In contrast, the fixed-point model 

recorded slightly higher losses, with both validation and test losses at 6.73%. This results in a relative increase 

in losses of 1.16% when fixed-point arithmetic is used. 

The figure 17 presents test accuracy of the 64-bit floating-point and the 8-bit fixed-point models. It was shown 

that floating-point model achieved a test accuracy of 98.24% while fixed-point achieved slightly lower accuracy 

of 98.19%. This drop in accuracy of 0.05% is negligible, which further explains why fixed-point arithmetic can 

be operated on with reduced precision, yet still able to maintain quite a high degree of accuracy. 
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Test Accuracy: 

 

Figure 17: 

V. DISCUSSION 

The experimental results highlight advantages and limitations of fixed-point versus floating point arithmetic in 

edge devices and embedded systems. These studies clearly demonstrate that using fixed-point arithmetic can 

considerably accelerate computation and minimizing power consumption, thus supporting its use in resource-

constrained environments. 

The results highlight a critical trade-off: fixed-point computation provides substantial speed and power 

advantages compared to its floating-point counterpart but introduces precision loss. This loss in precision was 

not highly influential in the neural network inference processes which indicated how easily these fixed-point 

formations can be introduced to edge devices. 

VI. CONCLUSION  

The study proves the feasibility of fixed-point algorithm as a resource efficient and faster method than floating-

point algorithm across edge devices. The experiments and results provide a comprehensive comparison of the 

two arithmetic methods. Fixed point operations consistently outperformed floating-point operations, achieving 

processing time reductions of up to 66% and decrease power-consumption of up to 50% while achieving 

performance nearly equivalent to those of floating-point operations with significantly reduced resource 

requirements, validating its suitability for low-power AI applications. In the case of neural network models, 

fixed-point arithmetic can efficiently shrink memory usage and training time, therefore it seems like an 

appropriate alternative on embedded devices. This advantage is also relevant in edge AI applications that 

require light-weight models for real-time processing. 

VII. FUTURE WORK 

Future studies may explore mixed-precision approaches in which combination of floating-point and fixed-point 

operations are used within the same processing unit. This hybrid approach may provide an optimal 

compromise between accuracy and efficiency for targeted accuracy tasks. Investigating advanced quantization 

techniques for neural networks can boost computational benefits and minimize accuracy loss of fixed-point 

arithmetic. Techniques such as dynamic quantization and post-training calibration should be considered and 

explored, both of which may improve the efficacy of artificial intelligence models on edge devices. Further 

research can extend the benchmarking to other domains e.g. audio processing, control systems and sensor 

networks to give proof of the general validity of the fixed-point arithmetic across a wide range of applications. 

Creating a standardized toolkit or library that reduces the difficulty of implementing fixed-point arithmetic 

could help accelerate its use by researchers and developers. These tools may consist of automatic quantization 

algorithms and accuracy estimators to allow easy conversion from a floating-point format to a fixed-point 

format. Testing in the field in applications such as healthcare, agriculture and industrial automation would 

serve practical purposes to bring to light long-term advantages and drawbacks related to fixed-point 
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arithmetic. These works may concern the stability of fixed-point models in changing environmental conditions 

and computational requirements. 

These results indicate that fixed-point arithmetic is a reliable alternative for improving the energy-efficiency of 

edge devices and embedded processing systems. The findings confirm the utility of fixed-point arithmetic for a 

cross-section of edge computing applications, from AI inference to low-level data processing, allowing more 

intelligent and energy-efficient IoT devices. 
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