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ABSTRACT 

This study examines the impact of different compiler optimization levels on the performance of Java, C, and C++ 

programs. It compares results across optimization levels specific to each language, analyzing the trade-offs 

between execution speed and resource usage. For C and C++, the research analyzes optimization levels O0, O1, 

O2, and O3, each progressively implementing more aggressive optimizations. For Java, Just-In-Time (JIT) 

compilation levels 0, 1, 2, and 3 are employed. The results provide valuable insights for developers and 

researchers aiming to achieve performance efficiency, establishing a foundation for selecting appropriate 

compiler optimizations in performance-critical applications across Java, C, and C++. 
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I. INTRODUCTION 

This research paper examines compiler optimization techniques across three programming languages: C, C++, 

and Java. The languages offer multiple optimization levels to balance execution speed with resource efficiency, 

addressing applications from embedded systems to large-scale enterprise software. For C and C++, optimization 

levels like O0, O1, O2, and O3 control code optimization intensity, reducing execution time by maximizing CPU 

cache usage, minimizing memory access delays, and streamlining instruction pipelines. In Java, the Just-In-Time 

(JIT) compiler within the Java Virtual Machine (JVM) performs dynamic optimization at runtime, balancing code 

optimization with the need for flexibility across diverse environments. The study uses a benchmark-driven 

approach to measure the effects of these optimization levels on the performance of predefined tasks, providing a 

comparative analysis of optimization impacts. The findings could guide the selection of compiler settings for 

high-performance applications, especially in resource-constrained or performance-sensitive environments. The 

paper contributes to the broader field of compiler optimization by mapping the relationship between 

optimization levels and performance metrics. 

 

II. LITERATURE REVIEW 

Compiler optimizations are crucial techniques used by compilers to improve the efficiency of machine code. 

These techniques include loop unrolling, inlining, and dead code elimination. The effectiveness of these 

techniques varies depending on the programming language, compiler, and target hardware. Studies have 

shown that GCC optimizations can significantly enhance the performance of C and C++ programs, especially in 

computationally intensive tasks.[1] In Java, the Java Virtual Machine (JVM) employs just-in-time compilation, 

hotspot optimization, and garbage collection to improve performance.[2] JIT compilation converts bytecode 

into native machine code at runtime, hotspot optimization identifies frequently executed code sections, and 

garbage collection reclaims memory.[2] These optimizations can significantly improve Java applications, 

especially in long-running server-side contexts.[2]  

Advancements in compiler optimizations focus on improving performance, with C compilers like GCC 

enhancing loop efficiency, while challenges remain in some areas like loop fusion [5]. Marmot, a Java compiler, 

prioritizes ease of implementation but can improve in garbage collection and synchronization [6]. Studies 

highlight the complex relationship between compilers and multicore processors [7], while C++ compilers 

continue to evolve with techniques like loop transformations and parallelism [8]. Research also explores cache 

optimization, dynamic optimization, and machine learning integration [9]. Additionally, tools like YARPGen 

help identify and fix bugs in compilers [11] 
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III. BACKGROUND 

The efficiency of compiled code has been a focal point of research since the early days of high-level 

programming languages. Compiler optimization is a critical process that enhances program performance by 

transforming code to make the best use of hardware resources. The concept of compiler optimization revolves 

around refining the code generated by compilers, enabling faster execution, reducing memory usage, and 

minimizing resource consumption. Each optimization involves a trade-off: while some aim to increase 

execution speed, others focus on reducing memory footprint or power consumption, crucial for resource-

constrained systems. 

IV. EXPERIMENTAL ANALYSIS 

A. Optimization of C 

Algorithm 

-O0 

Memory 

(KB) 

-O0 

Time (s) 

-O1 

Memory 

(KB) 

-O1 

Time (s) 

-O2 

Memory 

(KB) 

-O2 

Time 

(s) 

-O3 

Memory 

(KB) 

-O3 

Time 

(s) 

Bubble Sort 3104 0.015 3100 0.031 3100 0.015 3104 0 

Matrix 

Multiplication 
3108 0.015 3104 0.031 3104 0.03 3104 0.015 

Prime Number 3108 0 3104 0 3104 0.03 3104 0.015 

Fibonacci Series 3132 0.015 3132 0.061 3132 0 3132 0 

String Reversal 3104 0.031 3104 0 3100 0.031 3104 0.016 

Max/Min in 

Array 
3108 0 3104 0 3104 0 3108 0.015 

Binary Search 3104 0.031 3104 0.031 3108 0.046 3104 0.046 

Factorial 3104 0 3108 0 3104 0 3104 0.031 

GCD Calculation 3260416 0.015 3256320 0 3260416 0.031 3260416 0.046 

Insertion Sort 3268608 0.015 3268608 0 3268608 0 3268608 0.031 

Selection Sort 3268608 0 3268608 0 3268608 0 3268608 0.015 

Quick Sort 3260416 0.046 3264512 0 3272704 0 3272704 0.015 

Merge Sort 3272704 0 3272704 0 3272704 0 3276800 0 

Sum of Digits 3260416 0.03 3260416 0.03 3260416 0.031 3260416 0.015 

Sum of N Natural 

Num 
3260416 0.015 3264512 0 3260416 0.015 3260416 0.077 

Palindrome 3256320 0.03 3260416 0.015 3256320 0 3256320 0.015 

 

Table 1: C Outputs 

1. Memory usage across optimization levels: Memory usage remains stable across optimization levels for many 

algorithms like Bubble Sort, Matrix Multiplication, Prime Number, and Fibonacci Series. Sorting algorithms 

like Insertion Sort, Selection Sort, Quick Sort, and Merge Sort have significantly higher memory 

requirements due to increased data handling. O3 optimizations show slightly higher memory usage for 

Merge Sort and Quick Sort. Some algorithms, like GCD Calculation and Sum of N Natural Numbers, show 

elevated memory usage at O0 and O3, indicating that higher optimization levels do not universally reduce 

memory consumption. 

2. Execution time across optimization levels: Many algorithms show consistent performance improvements at 

higher optimization levels, such as Bubble Sort and Matrix Multiplication. However, some algorithms, like 

Factorial, Max/Min in Array, and Palindrome, show minimal differences in execution time across 
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optimization levels, suggesting they may not benefit as much from aggressive optimizations. O3 provides 

optimal performance for most algorithms, with some reaching 0 seconds due to compiler optimizations that 

eliminate or streamline certain calculations. 

3. Trade-Offs Observed: While O3 generally improves execution time, the associated increase in memory usage 

for some algorithms, such as Quick Sort and Merge Sort, indicates a trade-off between time efficiency and 

memory consumption. This suggests that while O3 is beneficial for time-critical applications, developers 

may need to evaluate memory constraints, especially in memory-sensitive environments. 

4. General observations: Sorting and recursive algorithms, such as GCD Calculation and Factorial, show varying 

optimization responses, some requiring increased memory while others improve execution time. Low-cost, 

high-gain optimizations, such as O2 and O3, offer performance gains without significant memory usage, 

making them suitable for applications prioritizing speed over minimal memory footprint. 

B. Optimization of C++ 

Operation 

-O0 

Memory 

(KB) 

-O0 

Time (s) 

-O1 

Memory 

(KB) 

-O1 

Time (s) 

-O2 

Memory 

(KB) 

-O2 

Time 

(s) 

-O3 

Memory 

(KB) 

-O3 

Time 

(s) 

Bubble Sort 5172 0.992 5180 0.945 5184 0.755 5172 0.744 

Matrix 

Multiplication 
5124 0.744 5116 0.814 5120 0.597 5124 0.641 

Prime Number 

Check 
5532 1.065 5120 0.753 5132 0.708 5124 0.76 

Fibonacci 

Sequence 
5596 0.59 5188 0.774 5188 0.479 5192 1.053 

String Reverse 5528 0.778 5120 0.607 5128 0.689 5124 0.774 

Maximum and 

Minimum 
5536 0.717 5120 0.711 5136 2.051 5128 0.616 

Binary Search 5704 0.702 5288 0.66 5292 0.627 5284 0.477 

Factorial 

Calculation 
5656 0.688 5228 0.551 5224 0.515 5248 0.684 

GCD 5787648 0.716 5373952 0.737 5365760 0.521 5373952 0.52 

Insertion Sort 5783552 0.588 5361664 0.778 5357568 0.544 5373952 0.646 

Selection Sort 5361664 0.864 5361664 0.609 5369856 0.718 5365760 0.482 

Quick Sort 5783552 0.6 5349376 0.546 5369856 0.665 5369856 0.665 

Merge Sort 5795840 0.654 5373952 0.783 5369856 0.672 5365760 0.8 

Sum of Digits 5783552 0.09 5341184 0.052 5345280 0.045 5341184 0.036 

Sum of N Natural 

Num 
5763072 0.063 5341184 0.058 5345280 0.041 5341184 0.053 

Palindrome 5337088 0.04 5337088 0.045 5320704 0.05 5341184 0.045 

 

Table 2: C++ Outputs 

1. Memory usage across optimization levels: Memory usage decreases as optimization levels increase 

from O0 to O3, with operations like Prime Number Check and Factorial Calculation showing a 

consistent reduction. Memory-intensive algorithms like Quick Sort, Insertion Sort, and Merge Sort 

show higher usage, particularly at O0. Although memory reduces in O1 and O2, there is still a notable 

requirement at O3, suggesting a compromise for aggressive performance optimization. Memory spikes 

occur when operations like GCD Calculation and Insertion Sort consume a large amount of memory, 

suggesting O0 may not be ideal for memory-intensive tasks, especially in C++. 

2. Execution time across optimization levels: Optimization improves execution times for most operations, 

particularly between O0 and O2. Bubble Sort and Matrix Multiplication show significant improvements. 
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Some operations, like Binary Search and Maximum and Minimum Calculation, achieve the fastest execution 

times at O2 and O3, with minimal gains at lower levels. However, Fibonacci Sequence shows slightly 

inconsistent performance, with O3 showing a higher execution time than O2. O3 optimization level generally 

provides the shortest execution times, especially for time-sensitive algorithms with acceptable memory 

trade-offs. 

3. Trade-Offs Observed: The text explains that simple operations like Sum of Digits and Sum of N Natural 

Numbers maintain low memory and execution time, suggesting minimal benefit from aggressive 

optimizations. Memory-intensive sorting and recursive algorithms show that optimizations can lead to 

substantial memory demands, especially at O0. O3 is ideal for performance-critical applications, while a 

balance between O1 and O2 might be more appropriate for memory-sensitive application. 

C. Optimization of Java 

Algorithm 
Level 0 

Time (ms) 

Level 0 

Memory 

(bytes) 

Level 1 

Time (ms) 

Level 1 

Memory 

(bytes) 

Level 2 

Time 

(ms) 

Level 2 

Memory 

(bytes) 

Level 3 

Time 

(ms) 

Level 3 

Memory 

(bytes) 

Bubble Sort 0.002 104 0.004 104 0.003 104 0.003 104 

Matrix 

Multiplication 
0.003 2031616 0.003 2031616 0.002 1048576 - - 

Prime Number 

Check 
0.01 2031616 0.008 2031616 0.008 1048576 0.008 1048576 

Fibonacci Series 10.157 2031616 9.14 2031616 9.833 1048576 9.187 1048576 

String Reversal 0.019 2031616 0.016 2031616 0.017 1048576 0.024 1048576 

Finding 

Max/Min in 

Array 

0.002 2031616 0.002 2031616 0.002 1048576 0.002 1048576 

Binary Search 40.159 2031616 29.037 2031616 28.778 1048576 27.309 1048576 

Factorial 

Calculation 
25.866 2031616 21.972 2031616 20.295 1048576 21.36 1048576 

GCD 20406.3 2097152 20476.8 2097152 22639.4 3145728 19713.6 3145728 

Insertion Sort 24542.4 0 23322.8 0 20925.5 0 21446.5 0 

Selection Sort 16735 2097152 18356 2097152 19448 3145728 24246 3145728 

Quick Sort 5.4 508184 5.5 509912 5.8 509912 4 509912 

Merge Sort 8.9 507624 8.9 509352 7.4 509352 8 509352 

Sum of Digits 1.6 507224 - 508952 1.2 508952 2.7 508952 

Sum of N 

Natural Num 
1 507224 1.7 508952 1 508952 1.1 508952 

Palindrome 

Check 
6.8 507288 8.4 509016 5.3 509016 6.5 509016 

 

Table 3: Java Outputs 

1. Memory usage across optimization levels: Many algorithms show a reduction in memory usage from Level 0 

and Level 1 to Levels 2 and 3, where usage is often halved to approximately 1048576 bytes. Complex 

operations like GCD Calculation, Selection Sort, and Insertion Sort have significantly higher memory 

requirements at higher optimization levels, possibly due to JIT optimizations prioritizing speed. However, 

simpler operations like Finding Max/Min in Array and Bubble Sort have consistent memory usage across 

levels, suggesting that these algorithms are less influenced by JIT optimization in terms of memory. 

2. Execution time across optimization levels: The use of JIT optimizations can significantly reduce execution 

times for various algorithms, such as Binary Search and Factorial Calculation. These optimizations can lead 

to significant time savings in recursive and sorting operations, with Quick Sort reaching its best time at 

Level 3 and Merge Sort at Level 2. However, not all algorithms benefit uniformly, as some tasks may 
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experience diminishing returns or slower performance due to JIT's internal trade-offs. For instance, 

Fibonacci Series' best performance is at Level 1, with slight time increases at higher levels. 

3. Trade-Offs Observed: Levels 2 and 3 offer optimal performance balance for time-sensitive algorithms, with 

quick sort and merge sort highlighting this balance. JIT optimizations are beneficial for large tasks, such as 

Binary Search and Factorial Calculation, as they reduce execution time. However, memory-intensive 

operations like GCD Calculation and Selection Sort require substantial memory at higher levels, suggesting a 

memory-performance trade-off. Basic calculations like Sum of Digits and Sum of N Natural Numbers have 

low time and memory requirements, suggesting that aggressive JIT optimizations offer limited benefit for 

simpler tasks. 

V. HYPOTHESIS TESTING 

1) Dataset Structure: The dataset contains the following columns: 

a. Task: The task number (1 to 16) 

b. Language: The programming language used (C, C++, Java) 

c. Optimization Level: The compiler optimization level (Level 0 to Level 3) 

d. Memory Usage (kb): The memory used during program execution, in kilobytes 

e. Execution Time: The time taken by the program to execute, in seconds 

2) Data Preprocessing: To prepare the data for statistical analysis, we conducted several preprocessing steps: 

a. Missing Value Check: We checked for any missing values in the dataset using data.isnull().sum(). No 

missing values were found. 

b. Categorical Variable Conversion: We converted the categorical columns "Language" and "Optimization 

Level" into numerical format using .astype('category').cat.codes to facilitate the analysis. 

3) Hypothesis: For the Two-Way ANOVA, we examined the following hypotheses: 

A. Null Hypotheses (H₀): 

a. Language has no significant effect on memory usage and execution time. 

b. Optimization level has no significant effect on memory usage and execution time. 

c. There is no interaction effect between language and optimization level. 

B. Alternative Hypotheses (H₁): 

a. Language has a significant effect on memory usage and execution time. 

b. Optimization level has a significant effect on memory usage and execution time. 

c. There is an interaction effect between language and optimization level. 

4) Assumptions check: Before proceeding with the Two-Way ANOVA, we checked the following assumptions: 

a. Normality of Data: We used the Shapiro-Wilk test to test if the data is normally distributed. 

b. Homogeneity of Variance: We used Levene’s Test to check if the variances across groups are equal. 

Normality Check Results: 

a. Memory Usage (kb): W=0.807, p-value = 1.20e-14 (Not Normally Distributed) 

b. Execution Time: W=0.265, p-value = 4.95e-27 (Not Normally Distributed) 

Homogeneity of Variance Check (Levene's Test): 

a. W=302.82, p-value = 2.32e-50 (Variances are NOT homogeneous) 

Conclusion: Both Shapiro-Wilk and Levene’s Test results indicate that the assumptions for a traditional 

parametric Two-Way ANOVA are violated due to non-normal distribution and unequal variances across 

groups. 

5) Permutation ANOVA analysis:  

Given that the assumptions for parametric ANOVA were not met, we opted to use Permutation ANOVA, a non-

parametric method that does not rely on distributional assumptions. The procedure for Permutation ANOVA 

involved: 

a. Permutation: Randomly shuffling the data to generate an empirical distribution of the F-statistic under 

the null hypothesis. 

b. F-statistic comparison: The actual F-statistic was compared to this distribution to compute the p-value. 
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Permutation ANOVA Results 

Source SS F-statistic p-value np2 

Language 8.33e+13 5.22 0.000036 0.107 

Optimization Level 9.73e+11 0.26 0.968469 0.001 

Language * 

Optimization Level 
1.12e+12 0.31 0.999519 0.002 

Residual 6.92e+14 - - - 

Table 4: Permutation ANOVA results for Memory Usage 

 

Source SS F-statistic p-value np2 

Language 6.65e+08 2.04 0.000003 0.132 

Optimization Level 1.70e+05 0.00 0.999844 0.000 

Language * 

Optimization Level 
3.40e+05 0.00 1.000000 0.000 

Residual 4.37e+09 - - - 

Table 5: Permutation ANOVA results for execution time 

Interpretation: 

1. Language has a significant effect on both Memory Usage (p = 0.000036) and Execution Time (p = 0.000003). 

2. Optimization Level has no significant effect on either Memory Usage (p = 0.968469) or Execution Time (p = 

0.999844). 

3. There is no significant interaction effect between Language and Optimization Level for either Memory Usage 

or Execution Time. 

 

6) Post-hoc Analysis: Tukey HSD: We performed Tukey’s Honest Significant Difference (HSD) test for pairwise 

comparisons to investigate which groups significantly differ from each other. 

A B mean(A) mean(B) T-value p-value Hedges' g 

C C++ 1.63e+06 2.72e+06 -3.21 0.0044 -0.478 

C Java 1.63e+06 1.05e+06 1.45 0.3194 0.368 

C++ Java 2.72e+06 1.05e+06 4.66 0.0000 0.769 

Table 6: Post hoc results for memory usage 

 

A B mean(A) mean(B) T-value p-value Hedges' g 

C C++ 0.0162 0.5935 -0.0007 1.0000 -2.423 

C Java 0.0162 3.9469 -4.6448 0.0000 -0.666 

C++ Java 0.5935 3.9469 -4.6441 0.0000 -0.666 

Table 7: Post hoc results for execution time 

7) Graphical representation: 
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VI. RESULTS 

The analysis of compiler optimizations and programming languages reveals distinct patterns in performance 

metrics such as execution time and memory usage. Across all tasks, C demonstrates consistent efficiency, 

outperforming both C++ and Java by achieving faster execution times and lower memory usage. This highlights 

C’s suitability for performance-critical applications, particularly in scenarios where resource constraints are 

paramount.   

Compiler optimizations (O0, O1, O2, O3 for C and C++ and JIT Levels 0 to 3 for Java) influence performance to 

varying degrees. Simple algorithms like Sum of Digits and Finding Max/Min in an Array show minimal impact 

from optimizations, suggesting that inherent language efficiency plays a more dominant role in such cases. In 

contrast, more complex algorithms, such as Quick Sort and GCD Calculation, benefit from higher optimization 

levels, with noticeable reductions in execution time and memory usage.   

C++ demonstrates substantial speed improvements at O3, particularly for tasks like Bubble Sort and Matrix 

Multiplication, where execution times nearly halve compared to O0. Similarly, Java’s JIT optimizations 

significantly reduce execution time for resource-intensive tasks, such as Fibonacci Sequence and Binary Search, 

at JIT Level 3. However, memory usage trends are less consistent. While higher optimization levels generally 
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reduce memory demands, they occasionally increase memory usage for specific tasks in C and C++, and Java 

exhibits stable yet slightly increased memory usage at higher JIT levels during complex operations.   

These findings highlight that the benefits of compiler optimizations are task-specific and vary across 

programming languages. While optimizations significantly enhance performance for complex tasks, simpler 

tasks rely more on inherent language efficiency. 

VII. CONCLUSION 

The results demonstrate that programming language choice is a crucial determinant of computational 

performance, with C emerging as the most efficient language for both execution time and memory usage across 

the tested tasks. While compiler optimizations provide measurable performance improvements for C++ and 

Java, particularly for complex tasks, their impact is less significant for simpler tasks where language 

characteristics dominate.   

For complex algorithms, such as Quick Sort and GCD Calculation, optimizations at O3 for C++ and JIT Level 3 for 

Java lead to significant execution time reductions, though these gains are occasionally accompanied by 

increased memory usage. Conversely, C’s inherent efficiency results in stable performance with minimal need 

for extensive optimizations, making it a reliable choice for simpler and moderately complex tasks.   

In conclusion, while compiler optimizations are effective for enhancing performance in certain scenarios, 

language selection remains the dominant factor in computational efficiency. Developers should carefully 

evaluate task complexity, resource constraints, and application requirements when selecting both the 

programming language and the appropriate level of optimization. This balanced approach ensures optimal 

performance tailored to the specific needs of the application. 
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