
 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[2752]

FLEXIBLE API REQUEST SENDER AND VULNERABILITY ASSESSMENT TOOL

IN .NET WITH SECURE API BACKEND DEVELOPMENT

Narendra Kumar Dwivedi*1, Dr. Priyanka A. Kadam*2
*1,2Smt. Kashibai Navale College Of Engineering, Vadgaon, Pune, India.

Affiliated By Savitribai Phule Pune University, India.

DOI : https://www.doi.org/10.56726/IRJMETS64073

ABSTRACT

In today's digital world, APIs (Application Programming Interfaces) are essential for connecting different

systems, such as web apps, mobile apps, and microservices. However, their growing use has also made APIs a

target for cyberattacks, making their security critical for developers and organizations.

This project presents a Flexible API Request Sender and Vulnerability Assessment Tool developed in .NET. It

allows users to send HTTP requests to APIs with customizable methods, headers, and payloads. The tool helps

detect common security issues, such as insecure communication (HTTP instead of HTTPS), exposure of

sensitive data (like usernames, emails, and passwords), and unsafe use of GET methods with sensitive

information.

The goal of this tool is to give developers and security professionals an easy way to test API security and

improve the resilience of APIs against cyber threats, ensuring APIs are both functional and secure.

Additionally, we will develop a secure API backend hosted on Cloudflare Workers, which will include features

like rate limiting and bot detection to further enhance security.

Keywords: API, API Request Sender, Vulnerability Detection, Cloudflare Workers.

I. INTRODUCTION

In today’s software ecosystem, Application Programming Interfaces (APIs) are essential for communication and

data exchange between systems. APIs allow different services to interact seamlessly across web applications,

mobile apps, and cloud-based platforms. They enable functionalities like authentication, payment processing,

and data sharing, making them integral to modern digital experiences. As the use of APIs grows, ensuring their

security has become a critical concern for developers, organizations, and security professionals.

While APIs provide flexibility and functionality, they also present significant security risks. As entry points for

external applications to access data, APIs can be vulnerable to issues like data leakage, unauthorized access, and

injection attacks. These vulnerabilities can have serious consequences for both the organizations that develop

the APIs and the users who rely on them. Therefore, securing APIs is a top priority, and organizations need

effective tools to test and safeguard them.

Traditional tools help developers test API functionality by sending HTTP requests (GET, POST, PUT, DELETE).

However, these tools typically lack the ability to identify security issues, such as sending sensitive data in

plaintext or using weak HTTP methods. They also fail to detect missing HTTPS encryption, leaving APIs

vulnerable to attacks.

To fill this gap, this project proposes the development of a Flexible API Request Sender and Vulnerability

Assessment Tool with an easy-to-use graphical interface (GUI) built in .NET. The tool allows users, from novice

developers to security professionals, to send customized API requests with various HTTP methods, headers,

and payloads. The GUI is designed with buttons, textboxes, dropdown menus, and tabs, making it simple for

users to test APIs without deep technical knowledge.

In addition to functional testing, the tool automatically checks for common security vulnerabilities, such as

sending sensitive data (like passwords or email addresses) in plaintext or using insecure HTTP instead of

HTTPS. It also includes features like JWT decoding, Base64 decoding, and response beautification to help users

better understand API responses.

While the .NET-based tool focuses on the front-end user experience, the project also includes a secure backend

development approach using server-side technologies with Cloudflare Workers. This backend will implement

http://www.irjmets.com/

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[2753]

security measures like rate limiting, firewall rules, and bot mitigation to protect the API from threats such as

DDoS attacks and injection vulnerabilities, ensuring secure and scalable communication.

II. METHODOLOGY

The Flexible API Request Sender and Vulnerability Assessment Tool integrates multiple components to provide

seamless API interaction, security analysis, and detailed reporting.

API Request Sender: Supports HTTP methods (GET, POST, PUT, DELETE) for diverse API operations, ensuring

flexibility in real-world scenarios.

Request Customization: Enables users to define headers (e.g., Authorization, Content-Type , User-Agent etc.)

and payloads (JSON, XML, form data) for tailored requests, with built-in security considerations like HTTPS

enforcement.

Vulnerability Scanner: Automatically detects issues such as insecure transmission, plaintext sensitive data,

and misuse of HTTP methods, providing actionable recommendations.

Decoding/Encoding Utilities: Includes JWT decoding, Base64 encoding/decoding, and Epoch timestamp

conversion for enhanced API interaction and debugging.

Reporting Module: Generates detailed PDF or text reports with request details, vulnerabilities identified, and

improvement suggestions.

Secure API Backend: Built with Cloudflare Workers, offering rate limiting, DDoS protection, and bot

management to ensure a secure and scalable backend environment.

III. MOTIVATION

The motivation behind developing the Flexible API Request Sender and Vulnerability Assessment Tool arises

from the growing prevalence of API-related security breaches and the challenges developers face in securing

their APIs. APIs are integral to modern web and mobile applications, but their vulnerabilities can lead to severe

issues such as data breaches, identity theft, and financial losses.

API Security in the Modern Era: APIs are essential for connecting systems, handling sensitive information,

and enabling communication between services. However, the rise in API-based attacks, including data breaches

and DoS/DDoS incidents, underscores the need for strong security measures. Many APIs remain vulnerable to

issues such as man-in-the-middle attacks, insecure data storage, and unencrypted communication, often due to

inadequate security practices.

Security Gaps in Current Tools: Popular tools are widely used for API testing but primarily focus on

functionality. They often overlook security testing, leaving developers without automated warnings for risky

practices, such as sending sensitive data over HTTP or not encrypting credentials. This gap makes it harder for

developers to identify and mitigate vulnerabilities.

Lack of Accessible Tools for Developers: Many developers lack specialized security knowledge and struggle

to perform in-depth security testing on their APIs. While they can test functionality, they may overlook critical

security flaws that attackers could exploit. A tool combining ease of use with automated security checks would

enable developers to detect vulnerabilities early in the development cycle without requiring advanced

expertise.

Personal Experience and Observations: From engaging with software development and security

communities, I’ve witnessed users and developers struggle with manual security assessments, which demand

significant expertise in protocols and standards. These challenges inspired me to create a tool that not only

simplifies security testing but also provides actionable feedback, bridging the gap between functionality and

security.

This tool aims to empower developers to build secure APIs and address the pressing need for accessible,

security-focused API testing solutions.

http://www.irjmets.com/

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[2754]

IV. ER DIAGRAM

Fig 1: ER Diagram

The E-R Diagram outlines the relationships between the core entities in the system:

1. User (U)

 Represents users interacting with the tool.

 Users send API requests through the system.

2. API Request (AR)

 Represents HTTP requests made by the user.

 Includes details like endpoint, method, headers, and payload.

 Logs vulnerabilities and uses utilities for decoding or encoding.

3. Vulnerability Log (VL)

 Logs identified vulnerabilities for each request, including type, details, and severity.

 Linked to the respective API request.

Response (R)

 Captures the server's response to an API request, including status code and body content.

 Used to generate reports for analysis.

Report (RP)

Represents exportable reports (e.g., PDF, text) generated based on API responses and vulnerability logs.

Utility Tool (UT)

 Represents auxiliary tools such as Base64, JWT, and epoch decoders.

 Processes input and output data during API requests.

V. CHALLENGES
 Complexity of Real-Time Vulnerability Detection: Detecting advanced vulnerabilities in real-time without

significantly affecting the performance of API testing can be technically challenging.

 Data Security and Privacy: Ensuring that sensitive data handled by the tool is securely stored and processed,

especially in cases involving shared cloud infrastructure.

 Scalability: Adapting the backend to handle a large volume of API requests and vulnerability scans

simultaneously without degradation in performance.

 Keeping Up with Evolving Threats: Continuously updating the tool to recognize new and sophisticated

attack patterns as API security threats evolve.

http://www.irjmets.com/

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[2755]

 Handling Diverse API Payloads: Parsing and processing non-standard or proprietary API payloads may

require significant customization, making the tool harder to generalize.

 Cross-Platform Compatibility: Ensuring that the tool functions seamlessly across different operating

systems and environments without requiring extensive configurations.

VI. FUTURE SCOPE
 AI-Powered Vulnerability Detection: Integrating artificial intelligence or machine learning models to identify

complex vulnerabilities, such as behavioral anomalies in API responses, that might not be detected by static

analysis.

 Support for Additional API Standards: Expanding the tool to support alternative API protocols like SOAP,

and WebSocket, increasing its versatility across different systems.

 Cloud-Based Integration: Transforming the tool into a cloud-based SaaS platform, allowing multiple users to

perform API testing and vulnerability assessments collaboratively.

 Integration with CI/CD Pipelines: Automating API testing and security checks during the software

development lifecycle by integrating the tool with popular CI/CD platforms like Jenkins, GitLab, and Azure

DevOps.

 Multi-Language Support: Adding internationalization to make the tool accessible to developers worldwide,

increasing its usability across different regions.

VII. CONCLUSION

The Flexible API Request Sender and Vulnerability Assessment Tool addresses a critical gap in API

development by combining the ease of request customization with automated vulnerability assessments. By

integrating features such as HTTP method flexibility, customizable headers, payload handling, and utilities like

JWT and Base64 decoders, the tool empowers developers to streamline API testing while maintaining robust

security practices. Additionally, its reporting module and real-time vulnerability scanner ensure that security is

prioritized throughout the development lifecycle. This tool not only simplifies the API testing process but also

provides actionable insights to mitigate potential risks, thereby enhancing the overall security of modern

applications. The API Backend developed using Cloudflare Workers leverages serverless architecture to deliver

a scalable, secure, and high-performance solution for API management. By operating at the edge, it ensures

reduced latency and faster response times, making it ideal for real-time API interactions. Features like rate

limiting, DDoS protection, and bot mitigation contribute to a robust security framework, while its lightweight

design supports rapid deployment and maintenance-free operations.

VIII. REFERENCES
[1] R. Krosnick, "Postman Flows: A Visual Programming Tool for Building API-Powered Apps and

Workflows," 2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

Liverpool, United Kingdom, 2024, pp. 356-358, doi: 10.1109/VL/HCC60511.2024.00047.

[2] MK Sconiers-Hasan, “Application Programming Interface (API) Vulnerabilities and Risks”, June 2024 ,

Carnegie Mellon University

[3] M. A. Kunda and I. Alsmadi, "Practical web security testing: Evolution of web application modules and

open source testing tools," 2022 International Conference on Intelligent Data Science Technologies and

Applications (IDSTA), San Antonio, TX, USA, 2022, pp. 152-155,

doi: 10.1109/IDSTA55301.2022.9923130.

[4] Neil Madden, “API Security in Action by Neil Madden”, Manning Publications , 2020

[5] Y. Liu et al., "Morest: Model-based RESTful API Testing with Execution Feedback," 2022 IEEE/ACM

44th International Conference on Software Engineering (ICSE), Pittsburgh, PA, USA, 2022, pp. 1406-

1417, doi: 10.1145/3510003.3510133.

[6] POSTMAN API Documentation,

https://www.postman.com/postman/postman-public-workspace/documentation/i2uqzpp/postman-

api

[7] Cloudflare Workers , https://developers.cloudflare.com/workers/

[8] .NET Framework Documentation , https://learn.microsoft.com/en-us/dotnet/framework

http://www.irjmets.com/

