
 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1755]

COMPREHENSIVE STUDY OF ONLINE CODE EXECUTION SYSTEM USING

CONTAINERIZED ENVIRONMENT

Prathmesh Shelar*1, Amit Potghan*2, Sami Shaikh*3, Mayur Saibane*4, Datta Kale*5,

 Prof. Priyanka R. Balge*6
*1,2,3,4,5Department Of Computer Engineering, JSPM Narhe Technical Campus, Pune,

Maharashtra, India.

*6Prof. Department Of Computer Engineering, JSPM Narhe Technical Campus, Pune,

Maharashtra, India.

ABSTRACT

As the demand for interactive learning and coding platforms continues, online code execution systems have

become important tools in education, coding competitions, and software development. This paper provides a

comprehensive review of an online code completion system designed to provide users with a secure, efficient,

and scalable environment for writing, testing, and executing code in a variety of programming languages. We

discuss the design of the system, focusing on key components such as code submission, execution engine, and

return results. The main focus is on security mechanisms, including sandboxing technology to prevent

malicious policies and control strategies to ensure the integrity of multiple users. Evaluate performance metrics

that demonstrate the system's ability to handle concurrent transmissions while maintaining low latency and

high throughput. The user experience is also delivered through an intuitive interface that facilitates code

editing, instant feedback, and access to test data.

Keywords: Online Code Compilation, Sandboxing, Programming, Execution Engine, Coding, Programming

Language.

I. INTRODUCTION

In recent years, online code execution systems have become pivotal for developers, educators, and learners,

providing a platform to write, run, and test code remotely. These systems leverage containerized environments,

enabling secure, scalable, and efficient code execution across various programming languages and frameworks.

By incorporating advanced technologies such as Docker, Kubernetes, and virtualization, these platforms

facilitate an isolated and controlled environment where users can execute code seamlessly within local and

global networks.

This study focuses on designing and optimizing an online code execution platform specifically for JavaScript

and Next.js environments, underpinned by Docker for containerization, PostgreSQL for reliable database

management, and Prisma for a streamlined data layer. The proposed system will support a variety of use cases,

from learning and prototyping to production-grade testing, by allowing users to interact with code in real-time

through virtual machines (VMs) that simulate actual network conditions and development environments. Using

Kubernetes for orchestration, the platform is built to efficiently handle multiple concurrent user requests,

dynamically allocate resources, and ensure high availability and fault tolerance.

The architecture of this system is designed to address the security, scalability, and resource management

challenges inherent in online execution platforms. We will explore how container orchestration and database

management practices can be optimized to deliver an efficient and robust solution. This paper focuses on study

of working and architecture of one of such code execution engine Judge0.

Judge0 allows programmers to setup an execution engine that evaluating a certain code against multiple test

cases defines in database by the programmer. This paper discusses the implementation and use of a system for

code evaluation hosted online through the help of Judge0.

II. METHODOLOGY

1. Judge0

Judge0 (pronounced as "judge zero") is a robust, scalable, and open-source online code execution system. We

use it as our primary judge of code where each file is executed and tested against each test case by Judge0. The

http://www.irjmets.com/

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1756]

test cases are stored in SQL database and it is pipelined through Prisma. The database is only used during

primary testing for working of Judge0 then it becomes obsolete as the size of test cases increases and hinders

and obstructs our performance. So, it is suggested that for full scale deployment use of cloud platforms such as

Amazon’s AWS S3 (Object Store) to store and interact with test cases.

2. Web Application Framework

This particular implementation of the Judge0 using next.js. We implement next.js for both frontend as well as

backend of the program. It allows for highly interactive webpages and Tailwind allows styling of these pages.

The webapp (short for Web Application) uses PostgreSQL for database and Prisma as an ORM (Object-

Relational Mapping) tool for pipelining database connectivity. To evaluate program through Judge0, we send

multiple requests to Judge0 that contain user program and sets of inputs for program and expected outputs.

Once the request is under processes, code is evaluated so that if the actual output of code matches with

expected output for each test case separately then the submission is approved otherwise denied.

 3. Docker

Docker is essential to this online code execution platform because it makes it possible to run user-submitted

code in isolated, secure environments. Every user's code executes in a separate container, offering a sandboxed

environment that improves security and guards against interference. Through the packaging of dependencies

and configurations required for every programming language, containerization guarantees consistency across

executions. Because containers can be spun up and down in response to demand, Docker also makes resource

management more effective. The platform can scale easily to accommodate different levels of user activity

thanks to Docker's integration with orchestration tools like Kubernetes. Stability and responsiveness are

essential for a high-performance code execution system, and this method guarantees both.

4. SQL Database (PostgreSQL)

PostgreSQL is an essential component of this online code execution platform because it serves as a dependable

and robust relational database management system for data storage and management. It is in charge of

managing problem data, code submissions, user information, and execution outcomes. Because of PostgreSQL's

robust JSON support, which facilitates relational data modeling and makes it simpler to store structured data

like code snippets and test cases, this platform favors it. With support for big datasets and multiple users at

once, PostgreSQL is also very scalable, making it appropriate for an expanding user base. It also works well with

Prisma, a contemporary ORM, which simplifies database operations and facilitates data access in Next.js and

Node.js environments.

We do have to take the limitations of a SQL database in consideration and when implementing the system at

scales where the test case keeps on increasing this slows the speed of transactions that a SQL database is

capable of providing. Here online storage solutions simply outclass the performance provided by PostgreSQL.

5. Prisma

Prisma is the ORM (Object-Relational Mapping) layer in this online code execution platform, which streamlines

database interactions and improves data consistency. Prisma, which serves as a bridge between application

code and PostgreSQL, allows for rapid querying, data validation, and type-safe operations, all of which are

especially valuable for complicated data pipelines such as user profiles, code submissions, and execution

outcomes.

Prisma's intuitive schema-based modeling makes it simple to define and manage database structures, as well as

alter data models as the platform evolves. As a robust ORM, Prisma allows for the pipelining of data-related

processes, ensuring that database interactions are clean, quick, and free of errors. It also supports migrations.

6. Virtual Machines (VMs)

Virtual machines (VMs) constitute the backbone of this online code execution technology, providing greater

security, flexibility, and scalability. They serve as the foundation for Docker containers, offering an additional

layer of isolation between the underlying hardware and the user code. This configuration assures that, even if a

vulnerability exists in the containerized environment, the host system is protected by the VM's isolation layer.

The virtual machines have an impact on the project because they provide a stable and adaptable environment

in which different operating systems and configurations can be operated concurrently, as well as support for a

http://www.irjmets.com/

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1757]

variety of programming languages and runtime environments. This adaptability is critical for managing

different code execution requirements in a controlled and predictable manner. Furthermore, VMs provide

better resource allocation because they can be scaled up or down based on demand, allowing the platform to

adapt to changing workloads. By utilizing VMs, the project strikes a compromise between performance and

security, delivering a dependable user experience for both learners and professionals.

As the VMs provide a more recoverable environment we setup all essential runtimes as well as our Judge0

engine on an Ubuntu VM. Ubuntu is optimal for performance of Judge0 and if during a cyberattack any harm is

caused to the Operating System (OS) of VM it is highly recoverable. Also, hosting database and Judge0 on

separate machines allow for an increased layer of insulation against attacks.

7. Local/Global Network

The flexibility of Judge0 allows us to either host the webapp locally or globally. What it means is that you can

either host the execution engine on small device and only allow a very small number of users to interact with it

or host it on larger networks with competently capable devices or host on cloud platform, and make a

permanent website that is available all day long.

8. Kubernetes

Kubernetes is critical to the scalability and stability of the Judge0-based online code execution platform.

Kubernetes is a container orchestration system that automates the deployment, scaling, and maintenance of

containerized applications, making it perfect for dealing with the dynamic nature of code execution services.

When user demand changes, Kubernetes can automatically scale the platform by adding or removing

containers based on the amount of code contributions, guaranteeing efficient resource use without the need for

operator intervention. This scalability is critical for sustaining performance during peak traffic periods, as

Kubernetes can spread traffic evenly across numerous instances while preventing any single instance from

becoming overwhelmed. Kubernetes further increases the platform's resilience by including capabilities such

as self-healing and fault tolerance. If a container dies, Kubernetes may immediately restart or replace it,

resulting in minimal downtime and uninterrupted operation. The platform can be deployed across numerous

servers or virtual machines, allowing Kubernetes to efficiently manage resources in a distributed environment

while optimizing CPU and memory use.

III. MODELING AND ANALYSIS

The model for webapp follows Figure 1. The figure represents the working and handling of requests where

multiple Judge Bots (workers) process multiple requests that Judge0 receives. The workers function as

independent threads that judges individual cases for a program that is under process.

Figure 1: Overview of Judge0 Execution Engine.

The next figure shows the mode of communication between the web server and Judge0 execution engine.

http://www.irjmets.com/

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1758]

Figure 2: Communication between Judge0 and Web Server

IV. RESULTS AND DISCUSSION

During the paper we discussed the working and functionality of online code execution platforms. We also

discussed on how we can implement these systems. These webapps could entirely be hosted on a single

machine and operate from one machine for all its locally connected devices. Following are the figures of

complete implementation of such one system.

Figure 3: Judge0 working on a Virtual Machine when Web Server runs on physical hardware

From Figure 3 we can conclude that it is possible to build the web application on a single machine the next

figure shows more prominent utilization of the online code execution system ready for deployment.

Figure 4: Working implementation of Judge0 (Online code judging program)

http://www.irjmets.com/

 e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science
(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:06/Issue:11/November-2024 Impact Factor- 8.187 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

[1759]

V. CONCLUSION

This project demonstrates the creation and deployment of an online code execution system in containerized

settings, utilizing Docker, PostgreSQL, Prisma, Kubernetes, and Judge0 for best performance, scalability, and

security at initial stages. The system is intended to address the demands of both educators and students of

coding by offering an interactive, efficient, and secure environment for coding practice and execution. Docker

isolates and manages execution environments, guaranteeing that each user's code executes independently and

without interference. PostgreSQL, along with Prisma as the ORM, provides a strong and efficient database

solution that supports data integrity and complicated queries, hence improving the backend architecture.

Kubernetes improves scalability and fault tolerance, allowing the system to manage a large number of

concurrent users, which is critical for both large educational institutions and smaller online coding platforms.

Judge0 provides a dependable and safe online code execution environment, with real-time feedback for user

code contributions. A virtual machine infrastructure supports both local and global network setups, providing

consistent access and performance across several locations.

This project not only fits current requirements for online code execution, but it also lays the groundwork for

future additions such as sophisticated monitoring, a chance for parallel programming, automated scaling and

improved user administration. Our system integrates technologies to create an accessible and productive

learning environment for users at all levels, adapting to the ever-changing online education and coding scene.

VI. REFERENCES
[1] Došilović, Herman Zvonimir & Mekterovic, Igor. (2020). Robust and Scalable Online Code Execution

System. 1627-1632. 10.23919/MIPRO48935.2020.9245310.

[2] Mizuno, Takahisa & Nishizaki, Shin-ya. (2014). Distributed Online Judge System for Interactive

Theorem Provers. EPJ Web of Conferences. 68. 10.1051/epjconf/20146800016.

[3] Porubän, J.; Nosál’, M.; Sulír, M.; Chodarev, S. Teach Programming Using Task-Driven Case Studies:

Pedagogical Approach, Guidelines, and Implementation. Computers 2024, 13, 221.

https://doi.org/10.3390/computers13090221

[4] Lindberg, R.S.N., Laine, T.H. and Haaranen, L. (2019), Gamifying programming education in K-12: A

review of programming curricula in seven countries and programming games. Br J Educ Technol, 50:

1979-1995. https://doi.org/10.1111/bjet.12685.

[5] Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. 2018. “A Survey on

Online Judge Systems and Their Applications.” ACM Comput. Surv. 51, 1, Article 3 (January 2019), 34

pages. https://doi.org/10.1145/3143560.

[6] X. Lu, D. Zheng and L. Liu, "Data Driven Analysis on the Effect of Online Judge System," 2017 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData), Exeter, UK, 2017, pp. 573-577, doi: 10.1109/iThings-GreenCom-CPSCom-

SmartData.2017.90.

http://www.irjmets.com/

