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ABSTRACT 

Apache Spark is a leading open-source data processing engine used for batch processing, machine learning, 

stream processing, and large-scale SQL (structured query language). It has been designed to make big data 

processing quicker and easier. Since its inception, Spark has gained huge popularity as a big data processing 

framework and is extensively used by different industries and businesses that are dealing with large volumes of 

data. This paper will exhibit actionable solutions to maximize our chances of reducing computation time by 

optimizing Spark jobs. The strategy lays out different run stages, wherein each run stage builds upon the 

previous and improves the computation time by making new enhancements and recommendations. 
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I. INTRODUCTION 

Apache Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, 

Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. Spark 

is designed to be fast, scalable, and fault-tolerant, and it can be used to process both batch and streaming data. 

One of the key features of Spark is its in-memory processing capability. Spark can store data in memory across 

a cluster of machines, which allows it to perform computations much faster than traditional disk-based 

systems. Spark also provides a variety of fault tolerance mechanisms, so that data processing can continue even 

if some of the machines in the cluster fail. 

Spark can be used for a wide range of large-scale data processing tasks, including: 

 Batch processing: process large datasets in batch mode, such as for data warehousing and machine learning. 

 Streaming processing:  process streaming data, such as sensor data and social media feeds. 

 Interactive data analysis: perform interactive data analysis on large datasets, such as for ad-hoc queries and 

data visualization. 

This paper focuses on how we can leverage different optimization techniques in order to reduce the 

computation time it takes to run the job end to end. 

II. METHODOLOGY 

The strategy lays out different run stages, wherein each run stage builds upon the previous, and improves the 

computation time by making new enhancements and recommendations. The underlying dataset here is based 

on flight data [1]. The challenge was to perform this computation on extremely high data volumes with better 

performance, and at a lower cost. The recommendations made here are with YARN & HDFS cluster but can be 

applied to other infrastructures as well. Six run stages of spark optimization. We start with an overview 

depicting the various run stages and the improved run times in each optimization technique. The first five runs 

took place on Spark 2.4 and the last one was implemented on Spark 3.1.4. 

III. MODELING AND ANALYSIS 

1. Optimization: Serialization, Parquet File Format, and Broadcasting 

1.1 Serialization 

Serialization helps in converting objects into streams of bytes and vice versa. When we work on any type of 

computation, our data gets converted into bytes and are transferred over the network. If we transfer less data 

across the network, the time taken for the job to be executed decreases accordingly. Spark provides two types 

of Serializations, Java and Kryo. 

1.1.1 Java Serialization 

 Provided by default, which can work with any class that extends java.io.Serializable 
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 Flexible but quite slow, and leads to large, serialized formats for many classes 

1.1.2 Kryo Serialization 

 Faster and compact compared to Java Serialization 

 Requires registering the classes in advance for best performance 

1.2 Parquet file format 

Apache Parquet is an open source, column-oriented data file format designed for efficient data storage and 

retrieval. It provides efficient data compression and encoding schemes with enhanced performance to handle 

complex data in bulk. 

 

Figure 1: A sample dataset in a tabular format 

 

Figure 2: Row-oriented storage format saves the data row-wise 

 

Figure 3: Column-oriented storage format saves the data column-wise 

Columnar formats are attractive in terms of both file size and query performance. File sizes are usually smaller 

than row-oriented equivalents as the values from one column are stored next to each other. Additionally, query 

performance is better as a query engine can skip columns that are not needed. 

1.3 Broadcasting 

Joining two tables is a routine operation in Spark. Usually, a large amount of data is exchanged over the 

network between the executing nodes. This exchange can cause network latency. Spark offers several join 

strategies to optimize this operation. One of them is Broadcast Hash Join. If one of the tables is small enough 

(the default is 10MB, but could go up to 40MB), the smaller table can be broadcasted to each executor in the 

cluster, and shuffle operations can be avoided. Broadcast Hash Join happens in 2 phases, Broadcast, and Hash 

Join. 

 Broadcast phase: Small dataset is broadcasted to all executors 

 Hash Join phase: Small dataset is hashed in all the executors and joined with the partitioned big dataset 

Here are some things to note about Broadcasting: 

1. The broadcast relation should completely fit into the memory of each executor as well as in the driver, 

because the latter starts the data transfer. 
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2. When the size of the broadcasted data is big, you would get Out Of Memory exception. 

3. Broadcasting only works for equi (‘=’) joins. 

4. Broadcasting works for all join types (inner, left, right) except full outer joins. 

5. Spark deploys this join strategy when the size of one of the join relations is less than the threshold values 

(10 MB default). The Spark property which defines this threshold is spark. sql. auto Broadcast Join Threshold 

(configurable). 

2. Optimization 2: Breaking the Lineage 

In our use case, we have complex computations which involve iterative and recursive algorithms that are 

performed on large volumes of data. Each time we apply transformations on a DataFrame, the query plan 

grows. When this query plan becomes huge, the performance decreases dramatically, which results in 

bottlenecks. It is not advisable to chain a lot of transformations in a lineage, especially when you need to 

process a huge volume of data with minimum resources. We tested the following three methods to break the 

lineage: 

2.1 Checkpoint 

Checkpointing is a process of truncating the execution plan and saving it to a reliable distributed (HDFS) or 

local file system. It’s a feature of Spark to that is specifically useful for highly iterative data algorithms. 

Checkpoint files can be used in subsequent job runs or driver programs. Checkpointing can be eager or lazy, as 

per the eager flag of checkpoint operator. The former is the default and happens immediately when requested, 

while the latter only happens when an action is executed.  

2.2 Local Checkpoint 

This works similarly to a checkpoint, but the data is not transferred to HDFS, and is instead saved to the 

executor’s local filesystem. If an executor is killed during processing, the data will be lost, and Spark will not be 

able to recreate this Data Frame from the DAG (Directed Acyclic Graph). 

2.3 Writing data to HDFS in parquet 

When we checkpoint the RDD/Data Frame, it is serialized and stored in HDFS. It doesn’t store it in parquet 

format, parquet provides efficient data storage. Breaking the lineage by writing to HDFS in parquet gave us the 

best performance of the above three. It would also be good to note that caching offers an alternative to increase 

performance without breaking the lineage. 

3. Optimization: Right Shuffle Partition 

Choosing the right shuffle partition number helps in job performance. Partitioning decides the degree of 

parallelism in a job, as there is a one-to-one correlation between a task and a partition (each task processes one 

partition)[4]. 

The ideal size of each partition is around 100–200MB. The smaller partitions increase the number of parallel 

running jobs, which can improve performance, but too small of a partition will result in overhead and increase 

the GC time. Larger partitions will decrease the number of jobs running in parallel and will also leave some 

cores idle, which will increase the processing time. In case of a shuffle, Spark recommends [2] below: 

1. If intermediate data is too large, then we should increase shuffle partitions to make partitions smaller. 

2. In case of idle cores during job runs, increasing shuffle partitions helps in job performance. 

3. If intermediate partitions are small (in KBs), then decreasing shuffle partitions helps 

4. For a cluster with huge capacity, the number of partitions should be 1x to 4x of the number of cores to gain 

optimized performance. For instance, with a data of 40GB and 200 cores, set the shuffle partition to 200 or 400. 

5. For a cluster with limited capacity, shuffle partitions can be set to Input Data Size / Partition Size (100–

200MB per partition). The best-case scenario would be to set the shuffle partition to be a multiple of the 

number of cores to achieve maximum parallelism, depending on cluster capacity. 

4. Optimization: Code  

For this run we focused on making two changes at the code level. 

 

 

https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql-Dataset-untyped-transformations.html#checkpoint
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4.1. Replace join and aggregations with Window functions 

In most of our computations, we had to perform aggregation on specified columns. The result was to be stored 

as a new column. In this instance, this operation consists of aggregation followed by join. The more optimized 

option here would be to use Window functions. By replacing our join and aggregation with Window functions 

in our code, we found significant improvement. 

4.2. Replace with Column with Select 

Every operation on a Data Frame results in a new Data Frame. In cases when we need to call with Column 

repeatedly, it’s better to have a single Data Frame. So, instead of using: 

 

use: 

 

5. Optimization: Speculative Execution 

Apache Spark has speculative execution feature to handle the slow tasks in a stage due to environment issues 

such as a slow network. If one task is running slowly in a stage, the Spark driver can launch a speculation task 

for it on a different host. Between the regular task and its speculation task, the Spark system will take the result 

from the first successfully completed task and kill the slower one. In the case of long running jobs (where some 

tasks are slower than the others) — which can be identified from monitoring the time taken via Spark UI, 

enabling speculation would help. If spark. speculation is set to true, then slow running tasks are identified 

based on the median computed by taking the completion time of other tasks. After identifying the slow running 

jobs, speculative tasks are initiated on the other nodes to complete the job. 

6. Optimization: Enabling AQE (Adaptive Query execution) 

For this run, we enabled AQE, which is the main feature of Spark 3.0. AQE can be enabled by setting SQL config 

spark. sql. adaptive. enabled to true (false is the default in Spark 3.0). In Spark 3.0, the AQE framework is 

shipped with three features: 

6.1 Dynamically coalescing shuffle partitions  

It simplifies or even avoids tuning the number of shuffle partitions. Users can set a relatively large number of 

shuffle partitions at the beginning, and AQE can then combine adjacent small partitions into larger ones at 

runtime. 

6.2 Dynamically switching join strategies 

It partially avoids executing suboptimal plans due to missing statistics and/or size misestimation. This adaptive 

optimization automatically converts sort-merge join to broadcast-hash join at runtime, further simplifying 

tuning and improving performance. 

6.3 Dynamically optimizing skew joins 

It is another critical performance enhancement, as skew joins can lead to an extreme imbalance of work and 

severely downgrading performance. After AQE detects any skew from the shuffle file statistics, it can split the 

skew partitions into smaller ones and join them with the corresponding partitions from the other side. 

IV. RESULTS AND DISCUSSION 

As we can see the total time it took post each optimization technique helped improve the runtime from 2.5 

hours without any optimization to roughly 35 minutes leading to ~78% improvements. Hence using spark 

tuning we can do large-scale data processing much faster without scaling the underlying compute 

infrastructure. 
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Figure 4. Time taken to run the job vs each optimization step 1-6 discussed in Section III 

V. CONCLUSION 

Spark tuning is critical in order to achieve maximum performance for a running job. This work deals with 

configuring Spark applications in an efficient manner. By tuning Spark applications, we achieved significant 

performance improvements (~78%) without scaling the underlying hardware. We evaluated the effectiveness 

of our proposal by dividing into 6 stages of optimizations and also provided the detailed principles behind our 

approach. Our results showcased that with an informed approach an existing large-scale workload can be 

computed in significantly less time using proper tuning of spark parameters. 
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