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ABSTRACT 

For protection power grids against disruptive disturbances, we investigate coordination control and the 

efficient application of thyristor-controlled series compensation (TCSC) in this work. Flexible alternative 

current transmission systems (FACTS) are components of the electrical grid.the control station, power flow, 

and phasor measurement units (PMUs) for sensing system states for producing the signals for regulation. We 

suggest a fresh method for coordination and management of TCSC devices to regulate power flow and adjust 

branch impedance in the event of unexpected disruptions on branches or buses. Furthermore, a numerical 

technique is created to calculate the gradient  

Keywords: Coordination Control, Thyristor-Controlled Series Compensation(Tcsc), Power Systems, Disruptive 

Disturbances. 

I. INTRODUCTION 

Blackouts in the electricity system have grown to be an unsolvable problem for governments and the power 

sector worldwide in recent decades. To address this problem, some researchers concentrate on finding a 

method to stop cascading outages in their initial stages [26, 27], others study the impact of communication 

delay on fault propagation by considering the power grid as a multi-agent system [14, 21], and still others look 

for disruptive disturbances (also known as triggering events) [22, 28]. Given that many blackouts are started 

due to the overload precondition [31], it is essential to reduce system stressors brought on by overloads in 

order to avert catastrophic outcomes and cascading failures. 

FACTS devices are used to ensure power oscillation dampening and enhance transient stability in order to 

reduce system stresses [13]. The reliable running of power grids is made possible by TCSC devices, which 

control the flow of power [9]. Numerous control strategies have been created thus far, including adaptive 

neural network backstepping control [17], finitetime H control approach [6], intelligent algorithms [4, 5, 24], 

and others. Second-order cone programming and model linearization are used to analyse the effect of TCSC in 

reducing system stress in [2]. Design reliable and nonlinear controllers for TCSC devices as well [11, 32]. The 

focus of current research is on how to build standalone TCSC controllers or coordinate TCSC with other FACTS, 

which can both increase the transient stability [16, 18]. 

It is important to research how TCSC devices work together in practise. 

Since multi-agent coordination control has already been widely utilised in other fields [15, 29], it can be used to 

reduce or even completely eliminate the load placed on the power grid by various events. By Coordination 

control allows agents to share information with nearby agents.to coordinate separate control operations in 

order to accomplish the control objective manner. Coordination control of TCSC is achieved by viewing each 

TCSC device as a smart agent.can be applied to real-time power grid protection [5]. By removing the pressure 

from having power grids in a methodical manner, it aids in enhancing their resistance to disruptive 

disturbances [30]. As a result, a coordination control strategy is created in the current efforts to reduce the 

system stress. 

1. Suggest a unique branch control coordination strategy for TCSC devices. coordination-related impedance. 

2. Create a practical numerical approach for calculating the gradient vector using cheap expenses for 

computation. 

3. Offer a successful TCSC device deployment plan to lower the number of TCSC without impairing control 

effectiveness.  
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The deployment of TCSC    takes into account the capacity to deal with unforeseen circumstances, which 

includes the stress induced by by clogged power flow. 

The remaining sections of this essay are organised as follows. Section 2 presents a problem formulation for the 

coordination control of TCSC devices. The new control method presented in Section 3 of the TCSC. The 

suggested strategy in Section 4 is validated using IEEE test systems. Section 5 draws the conclusion.. 

 

Fig. 1. (a) Smart power grids with PMU and FACTS. (b) Action sequence between the proposed protection 

strategy and delays 

II. PROBLEM FORMULATION 

Transmission networks, phase measuring units, FACTS devices, and control stations make up the smart power 

grid (see Figure 1(a)). PMU is specifically used to detect and transmit real-time state information about buses 

to the control station. Using the status information, the control station creates appropriate control signals to 

drive FACTS devices. The impedance of branches is also updated by TCSC devices to control power flow. Refer 

to [1, 25] to learn how the TCSC, PMU, and control station communicate. The two most used communication 

protocols for sharing data are synchronous optical networks (Sonet/SDH) and the asynchronous transfer mode 

(ATM), and electrical utilities have system management choices for handling issues. The cooperation between 

the suggested protective method and delays is depicted in Figure 1(b). It has been noted that the proposed 

protection method acts before the relays' protective systems and that it enhances the functionality of the latter. 

Take into consideration a power grid with n branches without losing generality buses m and. In order to 

restore the actual power flow Pe to the required values = (1, 2,..., n) C n when the power flow on the branch 

changes, TCSC devices alter the branch impedance. The optimization problem is framed as follows. In order to 

remove power system stressors, one must develop a control input U for TCSC devices. 

min H(Z)           (1) 

using a tuning parameter of [0, 1], and an objective function H(Z) = PR R 2 + PI I 2. Z stands for the vector of 

branch impedance. Keep in mind that PR and PI correspond to Pe's real and imaginary halves, respectively. 

Other complicated variables are also affected by the superscripts R and I. The Lyapunov function candidate V 

(Z) is created below to address Problem 1. 

V (Z) = H(Z) − H(Z∗), 

where H(Z∗) is the minimum value of Problem (1). Then the derivative of V (Z) with respect to the 

time t gives        
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By substituting (3) and (4) into (2)                      

 

  The Jacobian matrix J(Z) in (5)  

 

 The control input U is designed as 

 

Because of the intricacy of the system model, obtaining an accurate value of J(Z) is difficult. As a result, a 

numerical method for estimating J(Z) is proposed. Furthermore, rather than converting the minimization 

Problem (1) into the KKT condition, this work designs a coordination control approach to minimize the value of 

H(Z). CCA, rather than the KKT condition, ensures the convergence of the objective function H(Z). Figure 2 

depicts a simplified control flow chart for PMUs. 

 

Fig. 2. Regulation signals in smart power grids equipped with TCSC devices. 

Pb, V, and I time series should be collected. The Jacobian matrix can then be computed using the power flow 

equation   presented in the appendix by injecting a minor disturbance on the branch. Finally, the controller 

generates command signals for TCSC devices to regulate power flow in accordance with the defined control 

law, achieving the optimization goal. It is widely accepted that the TCSC device consists of two primary control 

blocks, the function of which is to improve the transmission capacity or stability of the power grid [23]. 
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External control can be designed in a variety of ways depending on the control objectives. . The typical PI 

controller is a sluggish automatic control for power flow regulation [12], and the coordination control 

presented in this paper is a sort of external control. The internal control block's job is to create adequate gate 

drive signals for thyristors to generate compensating reactance. Appendix 6.1 shows the link between TCSC 

impedance and power flow. 

Remark 2.1. The purpose of this work is to provide a novel coordination control method for 

regulating branch impedance via TCSC devices in order to reduce system stress. The proposed 

method is, in reality, ubiquitous. It is applicable not just to TCSC devices, but also to other FACTS 

devices. 

Remark 2.2. As shown in Appendix 6.2, the generic TCSC model tries to alter branch power flow 

by varying reactance. The control signal UR merely needs to be set to zero for the control 

strategy and algorithm established in this study, and control algorithm convergence is still 

assured. 

III. COORDINATION CONTROLLER DESIGN 

This section addresses how to determine J(Z) and the creation of coordination control laws. 

Generation of feedback control signals 

The coordination control law for TCSC devices is given by 

 

 

with the constant c > 0 and the upper limit Zi and lower limit Zi. The Coordination Controller (8) 

is composed of three terms: κ(Z), J(Z) and the error vector 

 

(Z) allows you to alter the branch impedance in a specific interval with upper and lower bounds. J(Z) represents 

the incremental direction of the goal function in relation to branch impedance. Pe can be calculated by 

comparing the desired and actual numbers. 

Proposition 3.1. The Control Input (8) for TCSC devices can ensure H(Z) convergence. 

P r o o f .   It is worth noting that both ZR and ZI are changed in accordance with (8).  By swapping (7) for (5), 

we get 

 

By substituting (8) into (9),  

 

where κ¯(Z) = (p κ1(Z), p κ2(Z), . . . , p κ2n(Z))T . This indicates that the objective function decreases 

monotonously as t → +∞. Thus, H(Z) is convergent because of H(Z) ≥ 0. 

Construction of Jacobian estimator 

The proposed CCA implementation necessitates the calculation of J(Z). J(Z) is calculated using the linear total 

least-squares method in [8]. Although there are approximations and relaxations in the modelling of pertinent 

problems, the procedure remains intricate and needs a considerable number of calculations. As a result, it is 

critical to devise a numerical method for estimating J(Z) that is computationally light. Four steps are involved in 

the Jacobian matrix approximation. Pe(Z) is calculated in the first step. The disturbed power flow Pe(ZR + ei) is 
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then created by injecting a minor disturbance onto each branch, where ei indicates the unit vector with the ith 

entry being 1. Taylor's theorem allows PR (ZR + ei) and PI (ZR + ei) to be rewritten as 

 

 

 

Algorithm 2 describes the implementation of the suggested coordination controller, which allows for a 

reduction in the performance index Sk. 

Proposition 3.2: CCA for TCSC devices in Algorithm 2 ensures monotonous convergence of Sk. 

Proof. CCA allows you to generate a sequence with Skk=1.  Sk+1 Sk and Sk 0, k Z+ imply that Sk converges to a 

constant value infk Z+ Sk monotonously as k approaches positive infinity. 

Remark 3.1: The final value of Sk is an unknown constant related to power system disruptions.  Sk converges 

to zero when the disturbances are minor.  Sk will converge to a constant if the disturbances are substantial and 

the proposed management approach cannot eliminate them. 
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IV. CONCLUSION 

A novel coordination control technique was developed to reduce system stress by managing power flow using 

TCSC devices. It also supplied the coordination controller design approach and demonstrated the convergence 

of the suggested control algorithm. The simulation results for various types of disturbances show that the 

suggested coordination control strategy has high stability when compared to the traditional control 

approaches. Finally, modelling findings showed that the successful deployment of TCSCs is closely related to the 

size of branch impedance, a novel technique to reducing the number of TCSCs. 

V. FUTURE WORK 

Future work could include optimising the deployment of restricted TCSC agents across the full power network 

using a distributed control mechanism [7], as well as estimating Jacobian elements from real PMU data without 

affecting the branch impedance. Furthermore, we intend to develop a multi-state control technique to improve 

system resilience while taking into account existing delay prevention technologies. 
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