
 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:05/Issue:10/October-2023 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [1325]

SOFTWARE DATA STRATEGIES FOR NETWORK OPTIMIZATION

SUPPORTING AI WORKLOADS

Sudheer Kandula*1, Sree Ranga Vasudha Moda*2
*1NVIDIA, Santa Clara, CA, USA.

*2Salesforce, San Francisco, CA, USA.

DOI : https://www.doi.org/10.56726/IRJMETS45318

ABSTRACT

In the contemporary landscape of Artificial Intelligence (AI), the convergence of advanced algorithms and

massive datasets has ushered in a new era of capabilities and possibilities. At the heart of the modern Artificial

Intelligence (AI) workloads lies the significance of data an indispensable resource that fuels the Artificial

Intelligence (AI) revolution. Managing, processing, and extracting value at scale from large datasets in runtime

demands sophisticated data infrastructure, storage solutions, and computational resources. One foundational

component in the High-Performance Computing (HPC), AI infrastructure is Computer Networking, especially in

layers such as LLMs (Large Language Models), big-data wrangling and computations. It serves as the backbone

that enables efficient data movement, communication, collaboration, and operation of massive workloads with

low latencies.

A well-designed software system should thrive for optimal utilization of network bandwidth that enhances the

performance, speed, accuracy, and scalability of AI systems, allowing organizations to unlock the full potential

of Artificial Intelligence (AI). This paper focuses on the data strategies needed to be embedded into our

software systems, particularly in the scope of network bandwidth optimization and outputs a comprehensive

comparison on a list of available technologies/techniques for each of the strategies listed.

Keywords: Network Bandwidth Optimization, Artificial Intelligence, Data Strategies.

I. INTRODUCTION

AI adoption in enterprises is exponentially growing globally, attributed to the wide variety of use cases around

personalized recommendations, predictive insights, customer service and so on. Our research says that

requirement for AI specialized infra, compute, high performing adaptive networks, is the need of the hour

owing to the unconditional demand into AI markets.

II. NETWORK OPTIMIZATION SOFTWARE DATA STRATEGIES

Optimizing network bandwidth is crucial for efficient communication, especially in scenarios where resources

are limited or expensive. Here are the techniques that can help achieve optimized network bandwidth for

transferring data across distributed microservices/Data/AI systems.

1. Data Compression

2. Data serialization formats

3. Message Packing

4. Delta Encoding

5. Caching

6. Data Deduplication

7. Data Chunking

8. Header Optimization

9. Predictive Prefetching

Data Transfer Strategies

1. Data Compression: [1] [2] [3] Use data compression techniques to reduce the size of messages before

transmitting them over the network. Common compression algorithms include gzip, snappy, zlib, and Brotli.

This reduces the amount of data transferred, thus saving the network bandwidth. Choosing a right codec

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:05/Issue:10/October-2023 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [1326]

depends on the requirement and trade off with compression vs speed. Our research shows the below

comparison results across widely used codecs in the industry.

Table 1: Comparison of data compression techniques.

 Measures zlib snappy gZip Brotli

Compression

ratio
2:1 to 5:1 ~6:1 ~9:1 ~11:1

Technique

LZ77 and

Huffman’s

encoding

LZ77 and

Huffman’s

encoding/ or

arithmetic coding

LZ77 and

Huffman’s

encoding

LZ77 algorithm,

Huffman coding

and 2nd order

context modeling

CPU Low Low High(2x) Highest

Storage Space Medium High Medium Low

Speed/Throughp

ut
Medium

Fast(~2-5x gZip)

Compression

250MB/sec

Decompression

500 MB/sec

Slow

Medium(Compress

ion is slow and

decompression is

faster than gZip)

Network

Bandwidth
Less Highest Medium Less

Latency High Very less High Medium

Data loss No No No No

Checksum

mechanism for

integrity of data

No
CRC-32C

checksum
CRC-32 checksum

Yes with Brotli

framing

Splittable No

Yes(With file

formats like

Parquet,ORC)

No Yes

Applications

Transmission over

the network

(HTTP

compression, SSH

compression),

compression in

programming

languages (e.g.,

Python's zlib

module).

Real-time data

processing,

Streaming, Hadoop

MapReduce, and

other big data

systems.

Web content

compression

(HTTP

compression,

serving

compressed

HTML, CSS,

JavaScript), file

archiving (e.g.,

.tar.gz files)

Web content

compression

(serving

compressed assets

like HTML, CSS,

JavaScript), HTTP

content encoding

(supported by

modern web

browsers).

https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Arithmetic_coding
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:05/Issue:10/October-2023 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [1327]

2. Data serialization formats: JSON, XML, Protocol Buffers [4] (protobuf), Thrift are the most popular all

serialization formats used for data interchange in software systems. Each has its own strengths and

weaknesses, making them suitable for different use cases. Here's a comparison of these formats based on

various criteria: One should pick appropriate formats that could help in reducing the size of messages and

consequently saving bandwidth.

Table 2: Comparison of data serialization techniques.

Criteria XML JSON Protobuf Thrift

Readability Yes but Verbose Yes, Easy
No, Binary &

Compact

No, Binary &

Compact

Serialization

Efficiency
Less Low High High

Schema Support Yes No Yes Yes

Performance Slowest Slow Very fast Very fast

Payload Size Highest High Very less Less

Network

Bandwidth
Highest High Very less Less

Ecosystem and

adoption

Legacy

applications with

SOAP format

Commonly used

for RESTful http

APIs, configuration

files, and web

applications

Ideal for high-

performance,

cross-language

data serialization,

remote procedure

call (RPC)

frameworks(gRPC)

, communication

between cloud-

native

microservices or

large-scale

distributed

systems.

Ideal for high-

performance,

cross-language

data serialization,

remote procedure

call (RPC)

frameworks, in the

big data and

storage domains

3. Message Packing: [5] Combine multiple smaller messages into a single larger message. Use batching of the

resources and entities. This minimizes the overhead associated with individual message headers, improving

efficiency by reducing the number of networks roundtrips.

4. Delta Encoding: [6] For big data that changes incrementally, transmit only the differences (delta) between

consecutive versions of the data instead of sending the entire dataset. This is useful for scenarios like real-time

collaborative editing. Popular data warehousing solutions such as Amazon Redshift, Snowflake, and Google Big

Query support CDC as part of their data loading and transformation processes. They offer features for

efficiently ingesting and processing change data into data warehouses.

5. Caching: [7] Implement client-side and server-side distributed caching mechanisms to avoid redundant

data transfers. Cached data can be reused, reducing the need to fetch the same data repeatedly.

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:05/Issue:10/October-2023 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [1328]

Table 3: Comparison of Data Caching Techniques

Feature Redis Memcached Hazelcast
Apache

Ignite
Couchbase

Data Structures

Supported
Versatile Key-Value Various Various Document

Performance Excellent High Good High Good

Persistence

Options(In-memory

Data backup)

Yes No Yes Yes Yes

Publish-Subscribe Yes No Yes Yes No

Network Bandwidth
Low to

Moderate

Low to

Moderate

Moderate to

High
High

Moderate to

High

Throughput

(Operations per

Second)

High Very High Good Very High Good

Latency Very Low Very Low
Low to

Moderate

Low to

Moderate

Low to

Moderate

Scalability
Yes

(Clustering)

Yes

(Clustering/M

ultithreaded)

Yes (Built-in) Yes (Built-in)
Yes

(Clustering)

Use Cases

Caching, Real-

time

Analytics,

Message

Broker,

Distributed

Caching

Web Caching

Distributed

Caching, Real-

time Analytics

Real-time

Analytics,

Distributed

Computing

Caching, Data

Storage

6. Data Deduplication: [8] [9] Ensure we are not transferring redundant data, rather ensure we are

deduplicating on all data operations. In scenarios where multiple clients may request the same data, implement

deduplication techniques to serve the data once and share it among the clients, rather than sending the same

data multiple times. Below are a few deduplication strategies which all could reduce network resources,

compared.

Table 4: Comparison of Data Deduplication Strategies.

Deduplication

Strategy
Key Characteristics Applications Advantages Challenges

Content-Aware

Deduplication

Analyzes the actual content of

data to identify duplicates,

even when data has been

Archiving,

backup, cloud

storage

Effective in handling

modified or

transformed data.

Computationa

lly intensive

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:05/Issue:10/October-2023 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [1329]

transformed or slightly

modified.

Hashing

Uses hash functions to

generate unique identifiers for

data chunks, which are

compared to identify

duplicates.

Archiving,

backup, cloud

storage

Efficient and widely

used for

deduplication

Risk of hash

collisions,

especially

with weak

hash

functions

Fixed-Size

Blocks

Divides data into fixed-size

blocks, comparing and storing

duplicates at the block level.

Backup,

network

optimization

Simple and efficient

for static data

May not be as

effective for

data with

variable-size

duplicates

Variable-Size

Blocks

Divides data into variable-size

blocks, optimizing

deduplication for content of

varying sizes.

Data

synchronizati

on, cloud

storage

Efficient in handling

variable-size data

Increased

computationa

l overhead

Data

Fingerprints

Assigns unique fingerprints or

checksums to verify data

integrity and avoid

transferring duplicate data.

Data transfer,

backup

Efficient in

eliminating duplicate

data transfer

Computationa

l overhead in

generating

fingerprints

7. Data Chunking: Break down large messages into smaller chunks and transmit them separately. This

approach is particularly helpful when dealing with large files, streaming data, text/audio/video/image type of

unstructured data. Below is the comparison on various chunking strategies that can be applied on unstructured

data for numerous applications in AI, like Natural language processing, Generative AI.

Table 5: Comparison of Data Chunking strategies.

Strategy Description Applications

Fixed-Size Chunks

Divide unstructured data into equal-

sized chunks to ensure consistent data

transmission.

File transfers, data streaming,

consistent bandwidth usage

Variable-Size Chunks

(Adaptive)

Chunk unstructured data based on

content, optimizing chunk sizes to

minimize data transfer overhead.

Content-aware transmission,

adaptive quality streaming

Document-Based

Chunking

Divide unstructured data based on

document boundaries to maintain

document integrity during transmission.

Document sharing, web content

delivery

N-gram Chunking

Divide text data into n-grams to enable

partial retrieval and optimized transfer

of relevant content.

Search engines, text analytics,

efficient content transfer

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:05/Issue:10/October-2023 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [1330]

Audio/Video Frame-

Based Chunking

Divide audio and video data based on

frames or frames of reference for

efficient multimedia transmission.

Video streaming, multimedia

content delivery

Keyframe Chunking

Chunks are created from one keyframe to

the next, ensuring efficient navigation

and reduced data transfer.

Video editing, fast-

forward/rewind features

Segmentation for

Adaptive Streaming [10]

Segment media data into varying-

duration segments to optimize streaming

quality and minimize data size.

Adaptive streaming (HLS, DASH)

Blob Chunking (Binary

Data)

Divide binary data into equal or variable-

sized chunks for efficient transmission of

binary content.

Image storage, data transfer,

multimedia content sharing

Content-Based Chunking

Analyze content and chunk data based on

content changes to efficiently transfer

relevant portions of data.

Multimedia content analysis,

content-based retrieval

8. Header Optimization: Minimizing headers in the messages reduces overhead and ultimately reduces

network bandwidth. If applicable, use binary headers instead of text-based headers. Below are few more

techniques for optimizing headers.

● HTTP/2 and HTTP/3: Consider upgrading to HTTP/2 or HTTP/3, which are more efficient in terms of

header compression and multiplexing, reducing header overhead.

● Minimize Cookie Usage: Cookies are commonly used for session management, but excessive use of cookies

can increase header size. Minimize the number and size of cookies sent with each request.

● Use Content Delivery Networks (CDNs): CDNs can optimize headers automatically. They handle tasks like

compressing and caching resources and provide optimized headers to the client.

● Use Content Compression: Enable content compression by including the "Accept-Encoding" header in

client requests and the "Content-Encoding" header in server responses.

● Caching Headers: Leverage caching headers like "Cache-Control" and "Expires" to instruct client browsers

to cache resources locally. This reduces the need for repeated requests to the server.

● Etag and Last-Modified Headers: Use the "Etag" and "Last-Modified" headers to indicate whether a

resource has changed. These headers enable conditional requests, reducing unnecessary data transfer.

● Preconnect and Prefetch Headers: Use "Link" headers to instruct the browser to preconnect to domains

hosting resources and prefetch resources. This can improve resource loading times.

● Connection Keep-Alive: Enable HTTP keep-alive to allow multiple requests to be sent over a single

connection, reducing the overhead of opening and closing connections for each request.

● Progressive Rendering: Implement progressive rendering by setting response headers to deliver critical

resources early in the response, allowing the browser to display content as it loads.

● Avoid Unnecessary Redirects: Minimize the use of unnecessary redirects (HTTP 301 and 302 status

codes), as they add overhead to request/response cycles.

● Reduce DNS Lookups: Limit the number of different domains for resources (e.g., scripts, styles, images) to

reduce DNS lookups and improve loading times.

9. Predictive Prefetching: [11] Predict what data a client might need next and pre-fetch it, reducing the round

trips, latency of subsequent requests. Few predictive prefetching techniques are listed below.

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:05/Issue:10/October-2023 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [1331]

● Adaptive Prefetching: Continuously adapt and refine prefetching strategies based on real-time network

conditions, user behavior, and performance feedback.

● Lazy Loading: Implement progressive loading of content, where initial content is delivered quickly, and

non-essential content is loaded in the background. This approach can improve perceived performance.

● Real-Time Bandwidth Monitoring: Monitor real-time network bandwidth and latency to adjust

prefetching strategies dynamically. If bandwidth is limited, reduce or defer prefetching.

● Server Push: In HTTP/2 and HTTP/3, use server push mechanisms to send resources to the client before

the client explicitly requests them. This can help reduce the need for additional round-trip requests.

● Resource Preloading: Preload essential resources such as images, scripts, and stylesheets in web

applications. Use browser hints like "prefetch," "preload," and "preconnect" to initiate early resource fetching

based on user navigation patterns.

● Content Delivery Networks (CDNs): Leverage CDNs that offer predictive prefetching capabilities. CDNs

can automatically determine what resources should be cached and delivered to reduce the need for round-trip

requests to origin servers.

● Resource Caching: Cache frequently accessed data or resources locally on the client or proxy servers to

reduce the need for repeated network requests. This can be done using browser caches, local storage, or server-

side caches.

III. CONCLUSION

Our research says that adapting to the above-mentioned data strategies could yield great benefits in optimizing

network bandwidth specially in distributed data/AI ecosystems. The strategies compared could be very specific

and can vary across a wide variety of use cases we have in transferring data across Software Systems/ Data

stores. Each of those could be traded off depending on the requirements and chosen that could be appropriate

for leveraging optimal network bandwidth in balance to other key metrics of operational compute metrics.

IV. FUTURE WORK

Network Optimization Strategies on Compute, Application, Hardware and Security fronts would be extensions

to this research and coming up in the future.

V. REFERENCES

[1] Huffman, D. A., "A Method for the Construction of Minimum Redundancy Codes", Proceedings of the

Institute of Radio Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.

[2] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE Transactions on

Information Theory, May 1977, pp.337-343.

[3] R. N. Williams, “An Extremely Fast Ziv-Lempel Data Compression Algorithm,” Proceedings of the IEEE

Data Compression Conference, IEEE Computer Society Press, April 1991, pp. 362-371.

[4] Currier, C. (2022). Protocol Buffers. In: Hummert, C., Pawlaszczyk, D. (eds) Mobile Forensics – The File

Format Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-98467-0_9

[5] R. Friedman and R. van Renesse, "Packing messages as a tool for boosting the performance of total

ordering protocols," Proceedings. The Sixth IEEE International Symposium on High Performance

Distributed Computing (Cat. No.97TB100183), Portland, OR, USA, 1997, pp. 233-242,

doi: 10.1109/HPDC.1997.626423.

[6] N. Samteladze and K. Christensen, "DELTA: Delta encoding for less traffic for apps," 37th Annual IEEE

Conference on Local Computer Networks, Clearwater Beach, FL, USA, 2012, pp. 212-215,

doi: 10.1109/LCN.2012.6423611.

[7] A. Balamash and M. Krunz, "An overview of web caching replacement algorithms," in IEEE

Communications Surveys & Tutorials, vol. 6, no. 2, pp. 44-56, Second Quarter 2004,

doi: 10.1109/COMST.2004.5342239.

[8] Qinlu He, Zhanhuai Li and Xiao Zhang, "Data deduplication techniques," 2010 International Conference

on Future Information Technology and Management Engineering, Changzhou, 2010, pp. 430-433,

https://doi.org/10.1007/978-3-030-98467-0_9

 e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:05/Issue:10/October-2023 Impact Factor- 7.868 www.irjmets.com

www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science

 [1332]

doi: 10.1109/FITME.2010.5656539.

[9] G. Lu, Y. Jin and D. H. C. Du, "Frequency Based Chunking for Data De-Duplication," 2010 IEEE

International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems, Miami Beach, FL, USA, 2010, pp. 287-296, doi: 10.1109/MASCOTS.2010.37.

[10] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld and P. Tran-Gia, "A Survey on Quality of

Experience of HTTP Adaptive Streaming," in IEEE Communications Surveys & Tutorials, vol. 17, no. 1,

pp. 469-492, Firstquarter 2015, doi: 10.1109/COMST.2014.2360940.

[11] T. I. Ibrahim and Cheng-Zhong Xu, "Neural nets based predictive prefetching to tolerate WWW latency,"

Proceedings 20th IEEE International Conference on Distributed Computing Systems, Taipei, Taiwan,

2000, pp. 636-643, doi: 10.1109/ICDCS.2000.840980.

