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ABSTRACT 

Covid-19, given its media coverage, has emphasized the need to predict the evolution of virus contagion. Hence 

the need to study some epidemiological models, analyzing their behavior over a period of time. 

The SI, SIS and SIR models, although basic models, are models that still explain many epidemic evolutions. 

Most authors report that these models behave well for populations of constant size. In this study, the models 

will be modified in order to analyze whether the entry and exit of elements of the population affect the normal 

evolution of the epidemic over time. Simulation using Python and Euler's method for solving differential 

equations. 

Keywords: Epidemic, SI Model, SIS Model And SIR Model. 

I. INTRODUCTION 

Since 2019, the words epidemiology and epidemic have been part of every individual's vocabulary, given the 

Covid-19 pandemic. Epidemiology can be defined as the study of how diseases spread through populations and 

the factors that can influence or determine this spread [1]. While, for Chasnov [2], an epidemic occurs when a 

small number of infected individuals are introduced into a susceptible population and results in an increasing 

number of infected people. On the other hand, Dobson [3] writes that a disease becomes an epidemic when it 

infects a substantial number of elements of a population in a short space of time. 

According to Ledder [4], theory without observation is a myth, and the opposite is nothing more than a 

collection of disconnected facts. This implies that the evolution of science is only possible with the combination 

of the two. Ledder [4] also writes that the link between theory and observation/practice is the domain of 

mathematical modeling. On the other hand, Allman and Rhodes [5] point out that mathematical language is 

designed for precise descriptions, which allows describing complicated systems that often require a 

mathematical model. 

To study the impact and spread of diseases in a population, models based on mathematical and statistical 

techniques are used. Second, Torres and Santos [6] write that a model is a conceptual or mathematical 

representation of a system that serves to understand it and quantify the evolution of an epidemic. The best-

known types of models are: behavioral and stochastic models. 

According to Allen [7], one of the most important differences between deterministic and stochastic epidemic 

models is their asymptotic dynamics; whereas, stochastic solutions converge to a disease-free state, while the 

corresponding deterministic solution converges to an endemic equilibrium. 

Behavioral or deterministic models are models that represent the spread of a disease through differential 

equations that describe how infection, recovery and mortality rates change as a function of time and other 

factors. These are useful for understanding general trends and making long-term predictions. On the other 

hand, Torres and Santos [6] write that in deterministic models, velocities depend only on the concentration of 

elements and model parameters. 

Stochastic models, unlike deterministic models, take into account the randomness and uncertainty associated 

with the spread of a disease. These use probabilistic methods to simulate multiple possible scenarios and assess 

the likelihood of different outcomes. Torres and Santos [6] state that in stochastic models the velocities also 

depend on the random noise of the system, due to the uncertainty present in systems containing statistically 

non-abundant elements. 

These models can be used for a variety of purposes, such as predicting the spread of disease, assessing the 

impact of public health interventions (such as vaccinations or social distancing measures), identifying at-risk 

populations, and designing disease control strategies. However, it is important to remember that all 
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epidemiological models are subject to certain limitations and assumptions and should be interpreted with 

caution. In this study the main objective is to just study some behavioral models. 

II. DETERMINISTIC EPIDEMIOLOGICAL MODELS 

Deterministic models are a category of mathematical models that describe the behavior of a system over time 

using certain deterministic rules and equations. This means that given the same initial conditions and 

parameters, the model will always produce the same result. They are widely used in epidemiology to predict 

the behavior of infectious diseases in a given population. 

According to Brauer et al. [8], in these models the study population is divided into compartments and 

assumptions are made about the nature and rate of transfer from one compartment to another. These different 

compartments, representing different health states and exposure to disease. 

Deterministic models are useful for understanding general disease spread trends and for evaluating the impact 

of public health interventions. However, they have some limitations, such as assuming homogeneity in the 

population and not capturing stochastic variability in disease transmission. 

The models under study will be the models: SI, SIS and SIR. 

SI Model 

The SI (Susceptible-Infested) model is one of the simplest models in epidemiology, where there are only 

susceptible and infested individuals. In this type of model, a healthy (susceptible) person can become 

infectious, since each individual in the population has the same probability of coming into contact with all other 

elements of the population, and if an individual in this population becomes infected, the disease it is permanent 

(there is no recovery). This model is best suited for populations where there is no mobility or change in the 

number of individuals: no losses or new acquisitions. 

According to Chasnov [2], when deriving the base differential equation for this model, considering the number 

of people who become infected and with the capacity to infest another individual over time    and let     be the 

probability that a randomly chosen infected individual infects another randomly selected individual susceptible 

during time   . Then, with S susceptible people and I infected people, the expected number of newly infected 

people in the total population during time    is       and   a constant that represents the average contact of an 

infected individual with a susceptible individual. Therefore, we can define the equilibrium equation as being: 

 (    )   ( )      ( ) ( ) 

When      and assuming that the population consists of N elements, then the number of infected people can 

be calculated, by: 

  

  
   ( ) ( ) 

As the number of infected people increases, the number of susceptible people decreases, so we can represent 

this action by: 

  

  
    ( ) ( ) 

Transposing these two differential equations to a system in which the number of susceptible individuals S(t) 

and the number of infected people I(t) appear as time-dependent variables t. According to the principle of mass 

action (a mathematical model that explains and predicts behavior of solutions in dynamic equilibrium), the rate 

of change of an individual from a susceptible state to an infected state is proportional to the product of the size 

of both populations: 

{

  

  
    ( ) ( )

  

  
    ( ) ( )

     (1) 

Therefore,     is the infection rate, then   ( ) ( ) is the number of susceptible individuals that are infected 

per unit time. 

Although this model is indicated for populations where there are only infested and susceptible individuals in 

populations of constant number, as previously mentioned. But assuming that we are in a real population where 

there are entries and exits of elements from the population. These entries refer to births and/or individuals 
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coming from other populations, while exits refer to individuals who die and/or leave this population to go and 

live in another. If we take   and   to be the rates of entry and exit of individuals, respectively. Adding the inputs 

and outputs to equation 1, we obtain: 

{

  

  
      ( ) ( )    ( )

  

  
    ( ) ( )    ( )

    (2) 

SIS Model 

The SIS (Susceptible-Infected-Susceptible) model, as its initials indicate, is aimed at infections, to which 

individuals have no immunity. 

In humans, according to López-Flores et al. [9], some infectious diseases spread due to the combination of 

pathogenic characteristics and human behavior. Pathogenic characteristics determine the circumstances under 

which a contagious person can infect another, and human behavior determines the frequency with which these 

circumstances occur. 

According to Brauer et al. [8], SIS terminology is used to describe a disease without immunity against 

reinfection, to indicate that the transition of individuals occurs from the susceptible class to the infectious class 

and then back to the susceptible class. In other words, as there is no immunity to this type of disease, a 

susceptible individual can become infected, remaining in this state until cured. When cured, it returns to the 

susceptible state. 

In this model, the total population N (without births or deaths) is studied, divided into two groups, 

(S)usceptible and (I)infected, which evolve over time t. The variations between them are a consequence of the 

contagion of susceptible individuals by infected individuals, and of infected individuals who recover and 

become susceptible again. Contagion occurs through a contagion rate     that depends on each disease and 

both groups, while recovery occurs through a recovery rate     that depends only on the group of infected 

individuals that exists at any given time. 

According to Chasnov [2], the SI model can be extended to the SIS model, where an infected individual can 

recover and become susceptible again. We assume that the probability of an infected individual recovering 

during time    is given by    . Then the total number of infested individuals that recover during time    is given 

by      , which can give rise to the equilibrium equation: 

 (    )   ( )      ( ) ( )      ( ), 

and since     , we obtain: 
  

  
   ( ) ( )    ( ). 

In the same way, we can calculate the validation of those infected, according to: 
  

  
    ( ) ( )    ( ), 

where   and   are constants of positive proportionality. 

Transposing these two equations into a system of two equations and two unknowns: 

{

  

  
    ( ) ( )    ( )

  

  
   ( ) ( )    ( )

     (3) 

Which, according to Chasnov [2], is based on the assumptions that: 

 The rate of new infections is given by the incidence of mass actions. 

 Those infected leave the infectious state and are no longer able to infect others at a rate    per unit of time 

and are susceptible to becoming infected again. 

 No change in the number of members of the population. 

 There are no losses of elements and the total population size is constant N. 

Taking into account the previous assumptions, we have:      . Então, taking into account Smith [10], that if 

we add the equations, we have: 
  

  
 
  

  
 
  

  
  , which is in line with the fact that the population size is 
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constant. We can try to solve the system of equations 3 directly and find the time series of the temporal 

evolution of the disease, where the time variable is explicit. 

Although the bibliography consulted always mentions that this model is aimed at constant populations, without 

inputs and outputs of population elements, a small change was made to simulate the SIS model in a variable 

population. To test an SIS model in a variable population, we took:   and   as the entry and exit rates of 

individuals, respectively. Taking equation 3, and adding the entry rates associated with N and the exit rates 

associated with infected and susceptible people, we obtain: 

{

  

  
      ( ) ( )    ( )    ( )

  

  
   ( ) ( )    ( )    ( )

    (4) 

SIR Model 

The SIR (Susceptible-Infected-Recovered) model is one of the most basic and widely used models. In this model, 

susceptible individuals (S) can contract the disease if they come into contact with infected individuals, infected 

individuals (I) can transmit the disease to susceptible individuals and eventually recover, and recovered 

individuals (R) are immune to the disease and cannot be infected again (or there is a very low rate of 

reinfection). In Chasnov [2], and Smith [10], the authors call those recovered removed. The term “removed” is a 

general term that allows infected individuals to no longer be infected but also to be no longer susceptible. In 

practice, this can mean that the person improves: either through treatment, natural immunity or that the 

person dies. 

The SIR model without variation in the number of elements in the population is an extension of the previous SI 

and SIS models, but with the difference that those who leave the infected class cannot be infected again, passing 

into the recovered class. Recovered individuals, for the purposes of the model, are considered permanently 

immune, even those who died as a result of the disease or were isolated until they achieved permanent 

immunity. In López-Flores et al. [9], the authors consider that the ideal situation to apply this model is to be 

considered an infectious disease that is not fatal and that provides permanent immunity to people who contract 

it. 

The SIR model is formulated as a set of ordinary differential equations (ODEs), which describe how rates of 

change in the number of individuals in each compartment depend on transmission and recovery rates. In its 

simplest model it can be formulated as the next system of differential equations: 

{
 
 

 
 

  

  
    ( ) ( )

  

  
   ( ) ( )    ( )

  

  
   ( )

     (5) 

Where, according to Martcheva [11], the number of individuals in each of the classes varies over time, that is: 

  ( ) ,  ( ) and  ( ), are the fractions of the population in each compartment at time t. Although, at any time we 

have:  ( )   ,  ( )     and  ( )   , where:  ( )   ( )   ( )   , when of the initial conditions, for      

and  ( )   , given that no one has recovered yet. The rate of change of susceptible individuals is proportional 

to the SI, with a proportionality constant    , while individuals are removed from the infectious class at a 

rate proportional to the size of class I, with a proportionality constant    . 

When we consider a variable population, the description of the system becomes more complete, and 

consequently more complex. Since we will have individuals being born, which implies an increase in the 

number of beings susceptible to the disease and we will have individuals dying, so that when considering a 

large time interval, the tendency is for the disease to reach a more or less stationary state and not be 

extinguished. Therefore, the system of equations 5 can be modified to: 

{
 
 

 
 
  

  
      ( ) ( )    ( )

  

  
   ( ) ( )    ( )    ( )

  

  
   ( )    ( )

    (6) 
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Where   and   represent the entry and exit rates of individuals, prospectively. These modifications are 

consistent, because for the susceptible group, we are counting new individuals introduced into the system 

(births and coming from other non-infected populations)    as well as the death and exit to other populations 

of individuals susceptible to the   ( ) disease. How should the departures for those infected and those 

recovered be counted, hence the negative sign in the last two expressions. 

The SIR model can also be used when some fraction of the population is not susceptible to the disease for 

genetic, behavioral, immunological reasons, etc. This fraction of the population is included in the recovered 

compartment from the beginning. 

III. SIMULATION AND RESULTS 

Model To better visualize the model, Python was used to simulate the number of individuals at different stages 

as a function of time. The code is the same for all three models, changing the equations depending on the model 

and adding the necessary variables for the model simulation. 

Mathematical models for biological and medical sciences are based on a variety of forms, such as: difference 

equations, ordinary or partial differential equations [12]. The models studied in this article use ordinary 

differential equations (ODEs). 

To simulate the models described above, the Euler method will be used to calculate differential equations, with 

a      . 

Usou-se também uma população de tamanho      , uma taxa de contágio         numa dimensão 

temporal de 30 dias. O valor do   foi calculado em função do numero de infetados na população no momento 

zero sobre o numero total de indivíduos   
 

   
      . 

A population of size       was also used, with a contagion rate of          in a temporal dimension of 30 

days. The value of   was calculated as a function of the number of infected people in the population at time zero 

over the total number of individuals:   
 

   
      . 

SI Model 

As previously mentioned, the SI model is the simplest where the population is either susceptible to contracting 

the disease or is infected. On the other hand, as none recover, there comes a certain time when all individuals 

are infected. Hence, only the contagion rate is necessary, in addition to other general variables such as sample 

size and time. 

 

Figure 1 – SI model for populations of constant dimensions 

By observing graph number 1, we see that after 6,5 days the same number of infected and susceptible people is 

reached and after 15 days the population is practically all infected. If we change the value of the contagion rate 

 , this will change the results. The higher the contagion rate, the faster the population becomes completely 

infected. 
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For the case where there is input and output of elements, the input rates        and output         and 

element output are added. The value of 0,02 comes from having assumed the possibility that 2% of elements of 

the population could enter/leave the population during the 30 days of the study. 

 

Figure 2 – SI model for populations of varying sizes 

As the values of   and   are the same, it is observed that graphs 2 and graph 1 are apparently very identical. By 

observing graph 2, it can also be seen that after 6,5 days the same number of infected and susceptible people is 

reached and at the end of 30 days the population is practically all infected, around 13 non-infected individuals. 

Also in this case, changing the value of the contagion rate changes the results. 

SIS Model 

The SIS model is the evolution of the SI, in which in this case after the individual has gone through the disease, 

already cured of it, he becomes susceptible again. In this case, as a recovery rate       was added, which is the 

percentage of individuals who go from infected to likely to contract the disease again 

 

Figure 3 – SIS model for populations of fixed dimensions 

By observing graph 3, it can be seen that those infected and susceptible reach the same value after 9 days, and 

at the end of thirty days there are more infected people (around 375) than susceptible ones (around 125). 

To observe whether there are many differences between the SIS model for constant populations and the SIS 

model for variable populations, with inputs and outputs. To check whether there are differences, the rates of 

entry and exit of elements are added to the equations. 
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Figure 4 – SIS model for populations of varying sizes 

It can be observed that under the same basic conditions, there are differences between graph 3 and graph 4, 

and in the latter, as there is entry and exit of elements in the population, and given the infection rate, the line of 

susceptible and non-infested intersect. At the end of the time (30 days) around 315 susceptible and 185 

infected were observed. Unlike the graph when studying the constant population in which around 125 

susceptible and 375 infected were obtained. In this case, if we lower the infection rate, the two lines end up 

crossing. 

SIR Model 

The SIR model is another model that behaves well when dealing with constant populations, that is, without 

entry or exit of elements in the population as can be seen in graph 5. For the simulation in addition to basic 

variables such as number of days , the number of individuals and the infection rate, the recovery rate        

was added, for which the same reasoning as the SIS model was followed. 

 

Figure 5 – SI model for populations of fixed dimensions 

By observing graph 5, the three states can be identified: susceptible, infected and recovered. Susceptibles start 

at 499 individuals and decrease exponentially to around 10 at the end of 30 days. The number of infected 

people increases until the tenth day with around 200 infected individuals and decreasing after this number of 

days until reaching a value of around 5 individuals at 30 days. On the other hand, those recovered grow from 

zero on day zero to around 485 individuals on the 30th day. 



                                                                                                                     e-ISSN: 2582-5208 

International Research Journal of  Modernization  in  Engineering  Technology  and Science 
( Peer-Reviewed, Open Access, Fully Refereed International Journal ) 

Volume:06/Issue:09/September-2024                      Impact Factor- 7.868                      www.irjmets.com                                                                                                                                                   

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [387] 

When we consider a variable population, it is normal to achieve greater variability than in the case of 

populations with constant numbers, given their nature. By simulating equations 6, using model conditions, 

graph 6 is obtained. 

 

Figure 6 – SIR model for populations of varying sizes 

In this graphical representation, differences can be observed in relation to the model with a population of fixed 

size, with the most significant line of recovered individuals exceeding 500 (515) individuals in the base 

population, while the lines of infected and susceptible individuals do not reach zero at the end of 30 days. It can 

also be observed that the number of susceptible people ends up growing (100) and only those infected reach a 

value above zero (15). As can be seen, this model needed more time to stabilize. 

IV. CONCLUSION 

According to Allen [13], diseases caused by a virus or bacteria are not modeled directly at the population level, 

only indirectly through the number of infected individuals. The disease states can be: susceptible, infected and 

recovered. In the SI and SIS models, only information about those infected and susceptible is treated, while in 

the SIR model, those who have recovered are added. 

After analyzing the simulation of the different models, it is clear that as the complexity of the model increases, 

there is greater variability in the results. Using the same values for rates, population and infected people at the 

beginning ended up showing these differences. 

During the simulations, care was taken to test with other rate values and it was observed that in the case of the 

SI and SIS models, there is greater variability than in the case of the SIR. 

Although all the models described here are indicated for constant populations, it can be observed that only in 

the case of the SI model was there no variation, which shows that it must be taken into account in the case of 

the SIS and SIR models for this issue. 

Although in some models the level of infected people even decreases, this does not mean, according to Muller 

and Kuttler [14] that infectious agents become weaker during an epidemic during the temporal evolution of the 

observed data. Evolution has to do with the rates involved in the mathematical model that explains the 

development of pathology. 
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