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ABSTRACT 

Classical computers use bits, whilst quantum computers use quantum bits (qubits). Quantum computers can 

perform tasks that classical computers are unable to perform. When ideal quantum computers are developed, 

they will be a serious threat to current encryption systems. This has prompted the development of post-quantum 

cryptography. The National Institute of Standards and Technology (NIST) have selected four post-quantum 

algorithms. Three employ lattice-based cryptography, whilst one employs hash-based cryptography. Although 

recent attacks on lattice-based cryptography mean that the post-quantum algorithms of the future are uncertain. 
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I. INTRODUCTION 

The technological world was taken by storm when quantum computers were introduced. There was a threat to 

the current encryption system we use, all our encrypted private data and information could be decoded by a 

properly working quantum computer easily. Hence, the National Institute of Standards and Technology (NIST) 

encouraged the development of post-quantum cryptography methods from all around the world. 

In the following sections we describe quantum computing, classical encryption and post-quantum encryption, 

then draw conclusions. 

II. QUANTUM COMPUTING 

Bits and Qubits 

Traditional computers use conventional bits, which can exist in two different states: 0 or 1. This is the reason 

that computers can only process data in binary. These classical bits represent the value of 0 or 1, which allows 

the computer to process any data and instructions. Classical bits can be thought of as essentially transistors on a 

silicon chip, that when holding charge have the value 1, and likewise have the value 0 when not holding charge. 

The model of the conventional computer, made by the combination of registers, buses, RAM, etc. invented by 

John von Neumann in 1945, depends on these bits.1 

However, in the 1980s, a sudden introduction of the theory behind quantum computers by David Deutsch took 

the technological world by storm.2 Scientists and researchers have worked for decades, to learn more about 

quantum computers. Quantum computers actually don’t use classical bits, but qubits instead. Qubits are special 

types of bits, which follow quantum mechanics instead of classical mechanics. Unlike the classical bits that can 

only be in one of two states at a time, qubits are different. They can exist in a superposition between both 0 and 

1, which theoretically allows them to be in an infinite number of states. Two qubits can also be entangled with 

one another. This phenomenon is called quantum entanglement. Let’s relate it with vectors to understand it 

better. 

In Figure 1, the Y-axis denotes 1 and X-axis denotes 0. In a classical bit, the state can be either 1 or 0. This is 

shown by the vectors shown on the graph, which can only be in two possible directions. The length of all vectors 

possible is 1. 

 

Figure 1: Classical bit 
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The graph in Figure 2 has the same axis as the graph in Figure 1, but rather than having two different options as 

states, it can stay in a superposition between the states of 0 and 1. We can say that it is in both 0 and 1 at the 

same time. Vectors that could represent these superpositions are shown on the left. Theoretically, a qubit could 

be in an infinite number of states. 

 

Figure 2: Qubit 

The amount of information shown by n classical bits at one point in time is n. However, for qubits, this increases 

exponentially. The amount of information that can be displayed is 2n, where n is the number of qubits. It is 

important to understand that a qubit exists in a superposition, but when it is measured, the qubit turns into either 

a 0 or 1, i.e. it behaves like a classical bit. This is called the collapse of the superposition. There is a certain 

probability of a qubit collapsing to 0 or 1, which is represented by the coefficients in the bra-ket notation. 

A qubit is represented as a complex vector (bra–ket notation): ψ⟩ = α|0⟩ + β|1⟩. α and β represent the amplitudes 

or probabilities of the qubit being in states 0 and 1. Hence, rather than holding one value, i.e. 0 or 1, at a time, a 

qubit can hold two values simultaneously. Again, when there are two classical bits together, we require two 

different values to represent both of them, for example (0,1), (0,0), (1,1) or (1,0). However, due to quantum 

entanglement, two different qubits become one single quantum system. Hence, there all four states that can be 

possible all exist together in a superposition, such as [(0,1);(0,0);(1,1);(1,0)] All these states have a certain 

probability of occurring when a qubit is measured. Hence, two qubits can store four classical bits worth of data. 

Similarly, three entangled qubits exist in eight different states at once, which all have a certain probability of the 

quantum system collapsing into one of them. Hence, three qubits can store eight classical bits worth of data. This 

pattern is exponential, the data n qubits can store is equal to 2n classical bits. 

In general, we create an entangled state of the input and output registers in which every value in the domain of 

the function is correlated with a corresponding value in its range. However, when we make measurements, we 

are given just one, random, output, which can be mapped to its input. So quantum computers are only powerful 

when we can design algorithms that enable us to harness the aforementioned phenomena. Grover’s algorithm3 

uses amplitude amplification, whilst Shor’s algorithm4 uses the quantum Fourier transform. 

Grover’s algorithm affects both symmetric and asymmetric encryption. With asymmetric encryption, Shor’s 

algorithm is far more effective than Grover’s algorithm, so in practice Grover’s algorithm affects most symmetric 

cryptographic algorithms and hash functions. Basically, Grover’s algorithm reduces a brute-force search 

algorithm from 𝑂(𝑛) steps to 𝑂(√𝑛) steps. If we have a key of length 𝑛 bits, a classical computer can brute force 

the key in 2𝑛 invocations. Whilst a quantum computer running Grover’s algorithm can brute force the key in 

2𝑛/2 invocations. Because Grover’s algorithm provides only a quadratic speedup, it can be neutralised by 

doubling the key length in symmetric encryption or the digest length of a hash function. 

Shor’s algorithm can solve the integer factorisation problem, the discrete logarithm problem and the elliptic-

curve discrete logarithm problem almost exponentially faster than classical computers. 

III. CLASSICAL ENCRYPTION 

RSA (Rivest–Shamir–Adleman) encryption allows data to be encrypted. Both sender and receiver have two keys 

each, a private key and public key.5 As the name suggests, the private key is a secret key to the user, while the 

public key is known by the internet. Theoretically speaking, RSA encryption takes advantage of a computer’s 

inability to factorise extremely large semi-prime numbers (product of two prime numbers). The public key is 

used to encrypt data into cipher text, while the private key is used to decrypt data back into plaintext. Even 
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though private and public keys are mathematically connected, the private key cannot be calculated from the 

public key. Let’s take an example of two people, Alice and Bob. Alice wants to send a file to Bob. In this case, Alice 

will use Bob’s public key (available publicly) to encrypt her file, and then send the encrypted file to Bob. Bob will 

use his own private key to decrypt the encrypted file, and can then receive the original file. This ensures security 

of the data transmitted between Alice and Bob. See Figure 3. 

 

Alice:  Alice’s private key Public/  Internet: Alice’s public key Bob’s public keBob: Bob’s private key 

     Figure 3: Public key encryption 

One-Way Functions used for encryption and cryptography 

Why are semi-prime numbers used? For classical computers, it is really difficult to factorise numbers. This is 

because the computer has to go to each and every number before it, divide it with the actual number, and check 

whether it is a factor or not. For smaller values, of course, factorising is possible. However, factorising semi-prime 

numbers is different. This is because a semi-prime number has only two factors (disregarding the number itself 

and 1), hence the number cannot be broken down to its factors easily. It becomes increasingly difficult with the 

semi-prime number becoming larger. Two random 11-digit prime numbers can be multiplied to form an 

extremely large semi-prime number, but factorising this number back to two prime numbers is extremely 

difficult. It is considered a one-way function, since going backwards is not feasible in reality. RSA encryption 

takes advantage of this exact weakness of classical computers. 

Another weakness of classical computers is the discrete logarithm problem. The cryptography world uses this 

exact problem to its advantage. The discrete logarithm problem uses modulo, a function that calculates the 

remainder after division. For example, 19 mod 6 = 1 (which is the remainder left). Now, the discrete logarithm 

problem can be written as ax mod y = r, which to solve, the computer needs to put each and every value of x from 

1 to y−1 to find r. This is because for each modulus function, there is a particular exponent that will yield all 

different remainders. Let’s take an example. In the equation 3x mod 7 = 4, for the ‘7’ in modulus, the exponents 3 

and 5 cause values of x such that all values produced when x is from 1 to 6 yields a different remainder. The range 

of values that need to be input in x is 1 to (7−1). So when a remainder is given, which is unique itself, a larger 

modulus number, let’s say, 31 digit modulus will make it very tough for the computer to use each and every 

number from 1 to that 31-digit number and check whether it matches the remainder or not. This is the weakness 

of classical computers that the cryptography world uses. 

IV. POST-QUANTUM CRYPTOGRAPHY 

Introduction 

Chen et al. shared the National Institute of Standards and Technology (NIST)’s understanding, as of 2016, of the 

status of quantum computing and post-quantum cryptography, and outlined NIST’s initial plan to move forward 

in this space.6 Whilst Bernstein and Lange presented an excellent review of the state of post-quantum 

cryptography as of 2017.7 

Due to Grover’s algorithm, symmetric encryption (such as AES) will need to double key lengths and hash 

algorithms (e.g. SHA-2 and SHA-3) will need to double the length of the digest. Whilst all of public-key 

cryptography (including RSA, ECDSA, ECC, ECDH and DSA) will cease to be secure due to Shor’s algorithm. 

However, message authentication code (MAC) will not be impacted by quantum computing. 
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It is expected that a quantum computer able to factorise a 2048-bit number in less than 24 hours will be available 

in around 2036.8 It is clear that there is a need for post-quantum solutions. NIST initiated a process to solicit, 

evaluate and standardise quantum-resistant public-key cryptographic algorithms.9 Options for post-quantum 

algorithms include the following families: code-based cryptography, hash-based cryptography, lattice-based 

cryptography and multivariate cryptography. We shall consider lattice-based cryptography and hash-based 

cryptography. 

Lattice Problems 

Lattices are used as a source of computational hardness in the construction of cryptographic functions that are 

at least as hard to break as solving some underlying lattice problem. The study of lattice-based cryptography 

essentially began with Miklós Ajtai’s discovery in 1996 that certain variants of the knapsack problem are at least 

as hard to break on average as the worst-case instance of certain lattice problems.10 There are currently no 

known quantum algorithms for solving lattice problems that perform significantly better than the best known 

classical (i.e. non-quantum) algorithms. It is conjectured that there is no polynomial time quantum algorithm 

that approximates lattice problems to within polynomial factors. 

We shall define a lattice, and describe the shortest vector problem, the shortest independent vectors problem, 

the closest vector problem, the short integer solution problem and learning with errors. 

Lattice 

A lattice is an infinite set of points in a coordinate space with the properties that coordinate-wise addition or 

subtraction of two points in the lattice produces another lattice point, the lattice points are all separated by some 

minimum distance, and every point in the space is within some maximum distance of a lattice point. 

The real coordinate space of dimension 𝑛, denoted Rn, is the set of all ordered 𝑛-tuples of real numbers, that is 

the set of all sequences of 𝑛 real numbers, also known as coordinate vectors. Whilst a vector space is a set whose 

elements, often called vectors, may be added together and multiplied (‘scaled’) by numbers called scalars. A real 

vector space is based on the real coordinate space. 

A set 𝐵 of vectors in a vector space 𝑉 is called a basis if every element of 𝑉 may be written in a unique way as a 

finite linear combination of elements of 𝐵. The coefficients of this linear combination are referred to as 

components or coordinates of the vector with respect to 𝐵. The elements of a basis are called basis vectors. 

The standard basis of a coordinate vector space (such as Rn) is the set of vectors, each of whose components are 

all zero, except one that equals 1. For example, in the case of the Euclidean plane R2 formed by the pairs (𝑥, 𝑦) of 

real numbers, the standard basis is formed by the vectors ex = (1, 0) and ey = (0, 1). Similarly, the standard basis 

for the three-dimensional space R3 is formed by vectors ex = (1,0,0), ey = (0,1,0) and ez = (0,0,1). 

A lattice 𝐿 ⊂ Rn is the set of all integer linear combinations of vectors from a basis {b1, …, bn} of Rn. In other words, 

𝐿 = {∑𝑎ibi ∶ 𝑎i ∈ Z}. A lattice can be described as a free abelian group of dimension 𝑛 which spans the vector space 

Rn. For any basis of Rn, the subgroup of all linear combinations with integer coefficients of the basis vectors forms 

a lattice, and every lattice can be formed from a basis in this way. For example, Zn is a lattice, generated by the 

standard basis for Rn. The basis for a lattice is not unique. For example, the vectors (3,1,4), (1,5,9) and (2,−1,0) 

form an alternative basis for Z3. 

Shortest Vector Problem 

The shortest vector problem (SVP) is the most famous and widely studied computational problem on lattices. It 

involves approximating the minimal Euclidean length of a non-zero lattice vector. SVP has been studied by 

mathematicians (in the equivalent language of quadratic forms) since the 19th century because of its connection 

to many problems in number theory. One of the earliest references to SVP in the computer science literature was 

a 1981 publication Peter van Emde Boas, where the problem is conjectured to be NP-hard.11 

Formally, in the shortest vector problem a basis of a vector space 𝑉 and a norm 𝑁 (often 𝐿2) are given for a lattice 

𝐿, and the goal is to find the shortest non-zero vector in 𝑉, as measured by 𝑁, in 𝐿. In other words, the algorithm 

should output a non-zero vector 𝑣 such that ‖𝑣‖𝑁 = 𝜆(𝐿). In the 𝛾-approximation version, SVP𝛾, one must find a 

non-zero lattice vector of length at most 𝛾 ⋅ 𝜆(𝐿) for given 𝛾 ≥ 1. 

When the shortest vector problem is applied to cryptography, a good basis corresponds to a private key, a bad 

basis corresponds to a public key and a point on the lattice corresponds to a message. 

http://www.irjmets.com/
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Shortest Independent Vectors Problem 

The shortest independent vectors problem (SIVP) is, given a lattice L of dimension 𝑛, find an algorithm that 

outputs 𝑛 linearly independent 𝑣1, 𝑣2, …, 𝑣n so that max ‖𝑣i‖ ≤ maxB ‖𝑏i‖, where the right-hand side considers all 

bases 𝐵 = {𝑏1, …, 𝑏n} of the lattice. 

In the 𝛾-approximate version, given a lattice L with dimension 𝑛, the goal is to find 𝑛 linearly independent vectors 

𝑣1, 𝑣2, …, 𝑣n of length max max ‖𝑣𝑖‖ ≤ 𝛾𝜆n (𝐿), where 𝜆n (𝐿) is the 𝑛th successive minimum of 𝐿. 

Closest Vector Problem 

The closest vector problem (CVP) is a generalisation of the shortest vector problem. Given a lattice and a target 

point, the challenge is to find the lattice point closest to the target. CVP has been studied in mathematics (in the 

equivalent language of quadratic forms) since the nineteenth century. One of the first references to CVP (under 

the name ‘nearest vector problem’) in the computer science literature was, again, in the publication by Peter van 

Emde Boas, where the problem was shown to be NP-hard to solve exactly.11 

Formally, in the closest vector problem, a basis of a vector space 𝑉 and a metric 𝑀 (often 𝐿2) are given for a lattice 

𝐿, as well as a vector 𝑣 in 𝑉 but not necessarily in 𝐿. The goal is to find the vector in 𝐿 closest to 𝑣 (as measured 

by 𝑀). In the 𝛾-approximation version CVP𝛾, the goal is to find a lattice vector at distance at most 𝛾. 

Short Integer Solution Problem 

When Ajtai introduced lattice-based cryptography, he presented a family of one-way functions based on short 

integer solution problems.10 Short integer solution (SIS) and ring-SIS problems are two average-case problems 

that are used in lattice-based cryptography constructions. 

Let 𝐴 ∈ ℤ𝑛×𝑚q be an 𝑛 × 𝑚 matrix with entries in ℤ𝑞 that consists of 𝑚 uniformly random vectors ai ∈ ℤ𝑛𝑞: 𝐴 = [a1| 

⋯ |am]. Find a nonzero vector ∈ ℤ𝑚 such that for some norm ‖ ⋅ ‖: 

• 0 < ‖‖ ≤ 𝛽, 

• 𝑓𝐴(x) ∶= 𝐴x = 0 ∈ ℤ𝑛𝑞. 

• A solution to SIS without the required constraint on the length of the solution (‖‖ ≤ 𝛽) is easy to compute 

using the Gaussian elimination technique. We also require that 𝛽 < 𝑞, otherwise = (𝑞, 0, … , 0) ∈ ℤ𝑚 is a trivial 

solution. 

• In order to guarantee that 𝑓𝐴(x) has a non-trivial short solution, we require that: 

• 𝛽 ≥ √(𝑛 log 𝑞), and 

• 𝑚 ≥ 𝑛 log 𝑞. 

Learning With Errors 

Oded Regev originally introduced the learning with errors (LWE) problem at STOC ’05.12 Learning with errors is 

based on the idea of representing secret information as a set of equations with errors. In other words, the value 

of a secret is hidden by introducing noise to it. It refers to the computational problem of inferring a linear 𝑛-ary 

function 𝑓 over a finite ring from given samples 𝑦𝑖 = 𝑓(x𝑖), some of which may be erroneous. 

More formally, let Z q denote the ring of integers modulo 𝑞 and let Znq denote the set of 𝑛-vectors over Zq. There 

exists a certain unknown linear function 𝑓 ∶ Znq → Zq, and the input to the LWE problem is a sample of pairs (x,𝑦), 

where x ∈ Znq and 𝑦 ∈ Zq, so that with high probability 𝑦 = 𝑓(x). Furthermore, the deviation from the equality is 

according to some known noise model. The problem calls for finding the function 𝑓, or some close approximation 

thereof, with high probability. 

Denote by 𝕋 = R/Z the additive group on reals modulo one. Let s ∈ Znq be a fixed vector. Let 𝜙 be a fixed probability 

distribution over 𝕋. Denote by 𝐴s,𝜙 the distribution on Znq × 𝕋 obtained as follows. 

1. Pick a vector a ∈ Znq from the uniform distribution over Znq. 

2. Pick a number 𝑒 ∈ 𝕋 from the distribution 𝜙. 

3. Evaluate 𝑡 = ⟨a,s⟩/𝑞+𝑒, where ⟨a,s⟩ = ∑n i=1 𝑎i 𝑠i is the standard inner product in Znq , the division is done in the 

field of reals (or more formally, this ‘division by 𝑞’ is notation for the group homomorphism Zq ⟶ 𝕋 mapping 

1 ∈ Zq to 1/𝑞 + Z ∈ 𝕋), and the final addition is in 𝕋. 

4. Output the pair (a, 𝑡). 
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The learning with errors problem LWE𝑞,𝜙 is to find s ∈ Znq , given access to polynomially many samples of choice 

from 𝐴s,𝜙. 

For every 𝛼 > 0, denote by 𝐷𝛼 the one-dimensional Gaussian with zero mean and variance 𝛼2/(2𝜋), that is, the 

density function is 𝐷𝛼 (𝑥) = 𝜌𝛼 (𝑥)/𝛼 where 𝜌𝛼 (𝑥) = 𝑒−𝜋(|𝑥|/𝛼)2, and let Ψ𝛼 be the distribution on 𝕋 obtained by 

considering 𝐷𝛼 modulo one. The version of LWE considered in most of the results would be LWE𝑞,Ψ𝛼. 

Regev showed that the LWE problem is as hard to solve as several worst-case lattice problems. He proposed a 

public-key cryptosystem based on the hardness of the LWE problem. The cryptosystem and the proof of security 

and correctness are both completely classical. The system is characterised by two integers 𝑚 and 𝑞, and a 

probability distribution 𝜒 on 𝕋. The setting of the parameters used in proofs of correctness and security is 

• 𝑞 ≥ 2, a prime number between 𝑛2 and 2𝑛2, 

• 𝑚 = (1 + 𝜀)(𝑛 + 1) log 𝑞 for an arbitrary constant 𝜀, and 

• 𝜒 = Ψ𝛼(𝑛) for 𝛼(𝑛) ∈ 𝑜(1/√𝑛 log 𝑛), where Ψ𝛽 is a probability distribution obtained by sampling a normal 

variable with mean 0 and standard variation 𝛽 /√(2𝜋) and reducing the result modulo 1. 

• The cryptosystem is then defined by: 

• Private key: The private key is an s ∈ ℤ𝑛𝑞 chosen uniformly at random. 

• Public key: Choose 𝑚 vectors a1, … , a𝑚 ∈ ℤ𝑛𝑞 independently from the uniform distribution and choose error 

offsets 𝑒1, … , 𝑒𝑚 ∈ 𝕋 independently according to 𝜒. Then the public key consists of (a𝑖, 𝑏𝑖 = ⟨a𝑖, s⟩/𝑞 + 𝑒𝑖)𝑚𝑖=1. 

• Encryption: The encryption of a bit 𝑥 ∈ {0, 1} is done by choosing a random subset 𝑆 of [𝑚] and then defining 

Enc(𝑥) as (Σ𝑖∈𝑆 a𝑖, 𝑥/2 + Σ𝑖∈𝑆 𝑏𝑖). 

• Decryption: The decryption of (a, 𝑏) is: if 𝑏−⟨a, s⟩/𝑞 is closer to 0 than to ½, then it is 0, otherwise it is 1. 

• The proof of correctness follows from the choice of parameters and some probability analysis. The proof of 

security is by reduction to the decision version of LWE: an algorithm for distinguishing between encryptions 

(with above parameters) of 0 and 1 can be used to distinguish between 𝐴𝑠,𝜒 and the uniform distribution over 

ℤ𝑛𝑞× 𝕋. 

Lyubashevsky developed the first ring learning with errors-based signature.13 He demonstrated how the 

framework that is used for creating efficient number-theoretic identification and signature schemes can be 

transferred into the setting of lattices. 

Hash-Based Cryptography 

A one-time key is when the encryption scheme is set up such that only one message may be encrypted with a key. 

Whilst a Merkle tree is a tree in which every ‘leaf’ node is labelled with the cryptographic hash of a data block, 

and every node that is not a leaf (called a branch) is labelled with the cryptographic hash of the labels of its child 

nodes.14, 15. A hash tree allows efficient and secure verification of the contents of a large data structure. 

A Lamport signature or Lamport one-time signature scheme is a method for constructing a digital signature.16 

Lamport signatures can be built from any cryptographically secure one-way function; usually a cryptographic 

hash function is used. Whilst a Merkle signature scheme is a digital signature scheme based on Merkle trees and 

one-time signatures such as the Lamport signature scheme. It was developed by Ralph Merkle in the late 1970s.17 

The central idea behind hash-based signature schemes is to combine a number of one-time key pairs into a single 

structure to obtain a practical way of signing more than once (but a limited number of times). This is done using 

a Merkle tree, with possible variations. One public and one private key are constructed from the numerous public 

and private keys of the underlying one-time scheme. The global public key is the node at the top of the Merkle 

tree. Its value is an output of the selected hash function, so a typical public key size is 32 bytes. The validity of 

this global public key is related to the validity of a given one-time public key using a sequence of tree nodes. This 

sequence is called the authentication path. It is stored as part of the signature, and allows a verifier to reconstruct 

the node path between those two public keys. 

In 2011 Buchmann, Dahmen, and Hülsing presented the hash-based signature scheme XMSS.18 It was the first 

provably (forward) secure and practical signature scheme with minimal security requirements: a pseudorandom 

and a second preimage resistant (hash) function family. Its signature size was reduced to less than 25% 

compared to the best provably secure hash-based signature scheme. 
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NIST’s Post-Quantum Cryptography Selected Algorithms 

The National Institute of Standards and Technology (NIST) has been at the forefront of the transition to post-

quantum cryptography. In 2022, they selected four algorithms designed to withstand attack by quantum 

computers.19 One, CRYSTALS-Kyber, for general encryption purposes such as creating secure websites, and three 

for digital signatures. Three of them, employ lattice problems, and one, SPHINCS+, employs a hash-based 

signature scheme. See Table 1. 

Table 1. NIST’s post-quantum cryptography selected algorithms 

Type Name Algorithm type Algorithm 

Public-key encryption and 

key-establishment algorithms 

CRYSTALS-Kyber Lattice-based Learning with errors 

Digital signature algorithms CRYSTALS-Dilithium Lattice-based Short integer solution problem 

Falcon Lattice-based Short integer solution problem 

SPHINCS+ Hash-based Hash-based signature scheme 

CRYSTALS-Kyber20 uses the learning-with-errors (LWE) problem over module lattices. Whilst the design of 

Dilithium21 is based on Lyubashevsky’s ‘Fiat–Shamir with aborts’ technique,22 which employs sample rejection 

to make lattice-based Fiat–Shamir schemes compact and secure. Falcon’s23 security scheme is based on Gentry, 

Peikert and Vaikuntanathan (GPV),24 NTRU lattices,25 fast Fourier sampling, short integer problems and Gaussian 

sampling floating-point arithmetic. SPHINCS+ is a stateless hash-based signature scheme.26 It uses many 

components from XMSS but works with larger keys and signatures to eliminate the state.  

The basic idea is to authenticate a huge number of few-time signature (FTS) key pairs using a so-called hypertree. 

FTS schemes are signature schemes that allow a key pair to produce a small number of signatures, e.g. in the 

order of ten for their parameter sets. For each new message, a (pseudo)random FTS key pair is chosen to sign 

the message. The signature then consists of the FTS signature and the authentication information for that FTS 

key pair. The authentication information is roughly a hypertree signature, i.e. a signature using a certification 

tree of Merkle tree signatures. Vidaković and Miličević provided a comparative evaluation of the three digital 

signature algorithms selected by NIST.27 Their findings indicated that CRYSTALS-Dilithium offers advantages in 

low-power scenarios, Falcon excels in signature verification speed and SPHINCS+ provides robust security at the 

cost of computational efficiency. 

Attacks 

Mujdei et al. used correlation power analysis-based side-channel analysis methodologies to target every 

polynomial multiplication strategy for all lattice-based post-quantum key encapsulation mechanisms in the final 

round of the NIST post-quantum standardization procedure.28 They were able to extract the secret key from all 

lattice-based post-quantum key encapsulation mechanisms.  

The proposed attacks can be mitigated by using masking and hiding countermeasures. Chen gave a polynomial 

time quantum algorithm for solving the learning with errors problem (LWE) with certain polynomial modulus-

noise ratios.29 Combining with the reductions from lattice problems to LWE shown by Regev, he obtained 

polynomial time quantum algorithms for solving the decisional shortest vector problem (GapSVP) and the 

shortest independent vector problem (SIVP) for all 𝑛-dimensional lattices within approximation factors of 

Ω̃(𝑛4.5). Bambury and Nguyen showed how blockwise reduction can exploit lattices with special geometric 

properties, effectively reducing the required blocksize to solve the shortest vector problem to half of the lattice’s 

rank, and in the case of the hypercubic lattice ℤ𝑛, further relaxing the approximation factor of blocks to √2.30 

V. CONCLUSION 

When ideal (i.e. large-scale and fault-tolerant) quantum computers are developed, public-key algorithms will 

cease to be secure. It is expected that a quantum computer able to factorise a 2048-bit number in less than 24 

hours will be available in around 2036.  

The results of the NIST competition suggest that lattice-base algorithms are the most successful algorithms for 

post-quantum cryptography. However, there have been recent attacks on lattice-based algorithms, so it remains 
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to be seen which post-quantum algorithms will be regarded as safe in the longer term.  Cryptographers should 

continue to publish successful attacks on existing post-quantum algorithms, and research new post-quantum 

algorithms. 
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