

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal) Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com 1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

SHADOW ANALYSIS FOR SOLAR PV PLANT USING GOOGLE SKETCHUP

G. Rajitha^{*1}, G. Vamshi^{*2}, CH. Venu Kumar^{*3}, G. Akash^{*4}

^{*1}Assistant professor, EEE Department, ACE Engineering College, Hyderabad, Telangana, India.

*2Student, EEE Department, ACE Engineering College, Hyderabad, Telangana, India.

^{*3}Student, EEE Department, ACE Engineering College, Hyderabad, Telangana, India.

^{*4}Student, EEE Department, ACE Engineering College, Hyderabad, Telangana, India.

DOI: https://www.doi.org/10.56726/IRJMETS-NCASCTE202203

ABSTRACT

Solar Photovoltaic (PV) system is environmentally-friendly which could reduce the consumption of electricity from the non-renewable energy sources. However, the generation of the PV system is highly dependent on weather conditions. More specifically, the shading of PV modules is a common phenomenon which can affect the performance of the PV system. Hence, this paper aims to establish relationship between the distance of a PV plant from a building object and its associated height. To achieve this, the google SketchUp software is used to simulate the shading conditions and estimate the PV system's output. For validity, the data of PV energy, total irradiation, Peak Sun Hour and performance ratio obtained from the simulation were compared with the google SketchUp software. The findings from this research suggest the relative distance of a PV plant should be located in relationship to its nearest building object. It is expected that such findings will provide a good rule-of-thumb for the solar PV system designer in selecting the viable project site.

Keywords : PV system, Shading, Sketchup.

I. INTRODUCTION

India is the world's third largest producer and third largest consumer of electricity. The national electric grid in India has an installed capacity of 382.15 GW as of 31 March 2021. Renewable power plants, which also include large hydroelectric plants, constitute 36.8% of India's total installed capacity. During the fiscal year (FY) 2019-20, the gross electricity generated by utilities in India was 1,383.5 TWh and the total electricity generation (utilities and non-utilities) in the country was 1,598 TWh. The gross electricity consumption in FY2019 was 1,208 kWh per capita. In FY2015, electric energy consumption in agriculture was recorded as being the highest (17.89%) worldwide. The per capita electricity consumption is low compared to most other countries despite India having a low electricity tariff.

II. METHODOLOGY

The three types tools used for designing a model:

- a) Large Tool Set bar
- b) Views Toolbar
- c) Shadows Toolbar
- LARGE TOOL SET BAR

Figure 1: Large Toolset bar.

The "Large Toolset" actually consists of 6 different toolbars.

- \rightarrow Main Toolbar
- \rightarrow Drawing Toolbar
- \rightarrow Modification Toolbar
- \rightarrow Construction Toolbar

www.irjmets.com

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal) Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com

1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

- \rightarrow Camara Toolbar
- \rightarrow Guiding Toolbar
- VIEWS TOOLBAR

SketchUp provides several pre-set views, with which we can view the object.

Figure2: Views Toolbar

• SHADOWS TOOLBAR

Figure3: Shadow Toolbar

With SketchUp's Shadows feature, you can make your model cast a basic shadow or see how the sun casts shadows on or around a geolocated model.

III. MODELING AND ANALYSIS

Analysis calculations with azimuth (butterfly pattern)

Figure 4: Shading Analysis with Azimuth

Note: Altitude or elevation angle = Height of sun

Azimuth angle = Position of sun

• Height:

 $Sin\beta = Ht/Lm$

 $\cos\beta = M'/Lm$

Ht = Sinβ*Lm→Sin(15°)*1.985 → 0.513755 M

Ht = 0.513755 M

M' = Cosβ* Lm→Cos(15°)*1.985 → 1.917362 M

M' = 1.917362 M

- Module Row Spacing: Tanα = Ht/LR-R
 - $LR-R = Ht/Tan\alpha \rightarrow 0.513755/Tan(27.62) \rightarrow 0.981887 M$
- Minimum Module Row LR-R = 0.981887 M LR-R(MIN) = LR-R*Cos(φ)
 - = 0.981887 * Cos(-50.59) → 0.623366 M LR-R(MIN) = 0.623366 M

Pitch = M' + LR-R(MIN)

 International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

 Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com

 1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022

 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

 = (1.917362 + 0.623366) M → 2.540728 M

Pitch = 2.540728 M

= 4.0/tan(27.62) → 7.644793 M

Obstacle shadow = 7.644793 M

IV. RESULTS AND DISCUSSION

CONDITION-1

Obstacle shadow = $h/Tan(\alpha)$

Figure 5: Building layout with solar panels.

Basic report

Latitude,Longitude: 40.018309 -105.242139 Boulder (CO) USA

Faces analysis

Faces global results										
Solar panels	N°₽.	P, powe (Wp)	r P.weig (kg)	ht Po (k)	wer Wp)	Sha (%)	ding L.			
DESERV 3M6+325:RenewSys	318	325,00	21,80	103	3,35	0.13				
Results for solar modules	in ea	ch face			_	_				_
Face Model		NºP. P.	power (ower kWp)	Wei (kg)	ght	Azimuti	Tilt	Relative	Sha (%)
1_0 DESERV 3M6-325:Ren	ewSys	318 32	5.00 1	03.35	6937	2.40	196,18]15.00	15,00	0.13
1_0 DESERV 3M6-325:Ren Monthly Shading Losses (ewSys %)	318 32	5.00 [1	03.35	6933	2.40	196.18	15.00	15.00	0.1
Face Jan Feb Mar Apr 1_0 0.09 0.60 0.17 0.03	May 0.02	Jun Jul 0.02 0.0	Aug S 1 0.02 0.	sp Oc 09 1.3	t No 0 0.2	W D	ec .44			
Mean 0.09 0.60 0.17 0.03	0.02	0.02 0.0	10.020.	09 1.3	00.	25 5.	.44			

Figure 6: Face analysis of Condition-1 Condition-1

Groups analysis

Groups global results											
Solar panels	N°₽.	P. power (Wp)	Power (kWp)	Shading L. (%)							
DESERV 3M6-325:RenewSys	318	325.00	103.35	0.13							

Results for solar modules in each group (grouped by same tilt, azimuth and panel model)											
Group	Model	NºP.	P. power (Wp)	Power (kWp)	Azimuth	Tik	Shading L (%)				
1	DESERV 3M6-325:RenewSys	318	325.00	103.35	196.18	15.00	0.13				

Monthly Shading Losses (%)												
Group	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	0.09	0.60	0.17	0.03	0.02	0.02	0.01	0.02	0.09	1.30	0.25	5.44
Mean	0.09	0.60	0.17	0.03	0.02	0.02	0.01	0.02	0.09	1.30	0.25	5.44

Figure 7: Group analysis of

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com 1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022

Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad **CONDITION-2**

Figure 8: Layout of building (with one side building)

Basic report

Latitude,Longitude: 40.018309 -105.242139 Boulder (CO) USA

Faces analysis

Faces	s global n	esults									
Solar	panels	NºP.	P. po (Wp)	wer P.v	veight))	Power (kWp)	Sha (%)	ding L.			
TATA:	TS250 ME	IZ 419	250.0	0 19.	10	104,75	0.21				
Resu	ts for so	lar mod	ules i	n each fa	ace		_		_		
Face	Model		Nº₽.	P. pow (Wp)	er Pow (kW	ver Wei /p) (kg	ght)	Azimuth	Tilt	Relative tilt	Shading L. (%)
2	TATA:TS	250 MBZ	419	250.00	104	75 800	2,90	195,79	15,00	15.00	0,21
Mont	hiy Shad Jan Fe	ing Los b Mar	ses (%	6) May Jun	Dul	Aug Se	pO	t Nov I	Dec		
2 Mean	0.45 0.8	60.34	0.05	0.08 0.00	0.06	0.02 0.3	91.	22 1.18 2	7.28		

Figure 9: Face analysis of Condition-2

Groups analysis

Groups global results											
Solar panels	Nº₽.	P. power (Wp)	Power (kWp)	Shading L. (%)							
TATA: TS250 MBZ	419	250.00	104.75	0.21							

Result	Results for solar modules in each group (grouped by same tilt, azimuth and panel model)																																	
Group	Mo	Model		iodel		Model		Model		Hodel		odel		lodel		Hodel		odel								P.	P. power (Wp)		Power (kWp)		Azimuth		Tilt	Shading L. (%)
1	TA	TA:TS	250 M	1BZ	419	2	50.00		104.	75	195.7	9	15.00	0.21																				
Monthly Shading Losses (%)																																		
Group	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec																						
1	0.45	0.86	0.34	0.05	0.08	0.00	0.06	0.02	0.29	1.22	1.16	7.26																						
Mean	0.45	0.86	0.34	0.05	0.08	0.00	0.06	0.02	0.29	1.22	1.16	7.26																						

Figure 10: Group analysis of

Condition-2

CONDITION-3

Figure 11: Layout of building (Between two buildings).

@International Research Journal of Modernization in Engineering, Technology and Science

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal) Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com 1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

Figure 12: Face analysis of Condition-3

Figure 13: Group analysis of

Condition-3

V. **CONCLUSION**

By completing this project, we have studied and analysed the factors that affect shadow such as latitude of the installing location, nearby buildings, the effect due to trees and passing of clouds etc. Shadows covering PV cells do indeed have an adverse impact on PV output voltage; however, the reduction varies depending on how manycells are included and on the cell'scombinations. The experimental results show that the largest decrease in output voltage of a polycrystalline PV occurs when parallel combinations of a PV cell are covered by shadows. At the same time, the smallest reduction occurred when the cells involved in series connection.

VI. REFERENCES

- [1] Vinodh Annathurai, Chin Kim Gan, Kyairul Azmi Baharin, and Mohd Ruddin Ab. Ghani, "shading analysis for the siting of solar pv power plant", ARPN Journal of Engineering and Applied Sciences, Vol. 11, April 2016.
- [2] Simon Wakter and Fredrik Wikerman, "A novel shade analysis technique for photovoltaic systems", KTH Industrial Engineering and Management, 2014.
- Y. Sun, X. Li, R. Hong, and H. Shen, "Analysis on the Effect of Shading on the Characteristics of [3] Largescale on-grid PV System in China," Energy Power Eng., vol. 05, no. 04, pp. 215–218, 2013.
- [4] Adeel Hassan, "Effectiveness of 3d modeling in construction industry using sketchup in reducing time and cost of project", Department of Management Sciences Comsats Institute of Information Technology: 15, December 2015.