

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:04/Conference:01/December-2022 Impact Factor- 6.752

www.irjmets.com

1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

LAPTOP PRICE PREDICTION USING MACHINE LEARNING

Dr. M.V. Vijay Saradhi*1, M. Dinesh Chowdary*2, P. Swarag Reddy*3, Y. Archana*4

*1Assistent Professor, Department Of Computer Science & Engineering, ACE Engineering College, Hyderabad, Telangana, India.

*2,3,4Department Of Computer Science And Engineering, ACE Engineering College, Hyderabad, Telangana, India.

DOI: https://www.doi.org/10.56726/IRJMETS-NCASCTE202221

ABSTRACT

This paper uses supervised machine learning to offer a system for predicting laptop prices. The machine learning prediction approach used in the study, multiple linear regression, provided 81% prediction accuracy. There are numerous independent variables when using multiple linear regression. only one dependent variable, whose actual and predicted values are contrasted to determine the accuracy of the findings. This study suggests a system in which the price is a predicted dependent variable that is derived from elements such as the laptop's model, RAM, ROM (HDD/SSD), GPU, CPU, IPS Display, and Touch Screen.

Keywords: Multiple Linear Regression, Laptop Price, Regression Model, Machine Learning.

I. INTRODUCTION

Predicting laptop prices is a crucial and significant endeavor, particularly when the laptop is being shipped directly from the factory to electronic markets or stores. There is no longer the craze for laptops that we witnessed in 2020 to facilitate distant work and learning. After the nationwide shutdown, demand for laptops in India skyrocketed, and in the June quarter of 2021, 4.1 million units were shipped, which was a five-year record. Because the price of a laptop typically depends on a variety of unique features and elements, an accurate price forecast requires specialist expertise. The most important ones are usually things like brand and model, RAM, ROM, GPU, CPU, etc. We used a variety of methodologies and techniques in this study to increase the accuracy of our used laptop price prediction.

II. METHODOLOGY

Of course, sample data is required to support the implementation of machine learning utilising the Decision Tree algorithm. The information about different laptops and their costs based on their configuration is shown in the table below.

Sample information was collected from Kaggle.com.

Pric	Weight	OpSys	Gpu	Memory	Ram	Cpu	ScreenResolution	Inches	TypeName	Company
71378.68	1.37kg	macOS	Intel Iris Plus Graphics 640	128GB SSD	8GB	Intel Core i5 2 3GHz	IPS Panel Retina Display 2560x1600	13.3	Ultrabook	Apple
47895.52	1.34kg	macOS	Intel HD Graphics 6000	128GB Flash Storage	SGB	Intel Core i5 1.8GHz	1440×900	13.3	Ultrabook	Apple
30535.000	1.86kg	No OS	Intel HD Graphics 620	256GB SSD	8GB	Intel Core i5 7200U 2.5GHz	Full HD 1920x1080	15.6	Notebook	HP
135195.336	1.83kg	macOS	AMD Radeon Pro 455	512GB SSD	16GB	Intel Core i7 2.7GHz	IPS Panel Retina Display 2880x1800	15.4	Ultrabook	Apple
96095.808	1.37kg	macOS	Intel Iris Plus Graphics 650	256GB SSD	8GB	Intel Core i5 3.1GHz	IPS Panel Retina Display 2560x1600	13.3	Ultrabook	Apple
	144	120	air	241	-	-		140		-
33992.640	1.8kg	Windows 10	Intel HD Graphics 520	128GB SSD	4GB	Intel Core i7 6500U 2.5GHz	IPS Panel Full HD / Touchscreen 1920x1080	14.0	2 in 1 Convertible	Lenovo
79866.72	1.3kg	Windows 10	Intel HD Graphics 520	512GB SSD	16GB	Intel Core i7 6500U 2 5GHz	IPS Panel Quad HD+ / Touchscreen 3200x1800	13.3	2 in 1 Convertible	Lenovo
12201.12	1.5kg	Windows 10	Intel HD Graphics	64GB Flash Storage	2GB	Intel Celeron Dual Core N3050 1.6GHz	1366×768	14.0	Notebook	Lenovo
40705.920	2.19kg	Windows 10	AMD Radeon R5 M330	1TB HDD	60B	Intel Core i7 6500U 2 5GHz	1366×768	15.6	Notebook	HP
19660.320	2.2kg	Windows 10	Intel HD Graphics	500GB HDD	4GB	Intel Celeron Dual Core N3050 1.6GHz	1366×768	15.6	Notebook	Asus

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com

1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

The C4.5 algorithm (used as a Decision Tree Classifier that can be used to generate a decision based on a sample dataset) begins by choosing the highest gain attribute as the tree's root, then creating branches for each value, dividing the cases into branches, and repeating the process for each branch until all the cases in it belong to the same class.

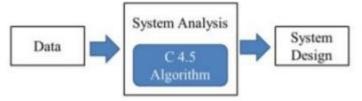


Figure: Flow of design and analysis

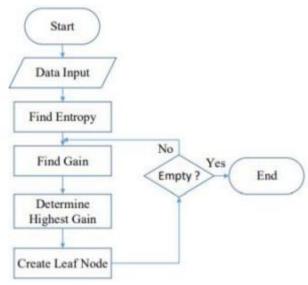


Figure: C 4.5 algorithms flowchart

Entropy and Gain were employed in calculations for each variable to ensure reliable findings. Entropy gauges the degree of randomness in a set of data. The classification process will be impacted by the high Entropy value. The equation used to calculate Entropy and Gain, as follows:

$$Entropi(S) = \sum_{j=1}^{k} -p_j \log_2 p_j$$

S: Case set

k: Number of S partition

Pj: Probability obtained from the total (Yes / No) divided by the total case

Gain (S,A) = Entrophy (s) -
$$\sum_{i=1}^{n} \frac{|s_i|}{|s|}$$
 Entrophy (si)

S: Case set

A: Attribute

n: Number of A attribute partition

|Si|: Number of cases on the i partition

|S|: Number of S partition

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com

1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

EXPLANATORY DATA ANALYSIS (EDA)

We can now compute tables and draw graphs to show how each characteristic relates to the variability of laptop pricing using our feature-engineered dataset. The bar plot technique, which we imported from Matplotlib, allows us to test and validate our original theories or hypotheses about how certain characteristics may affect laptop prices. Below is an example of how to plot a bar plot for the feature TypeName (type of laptop)

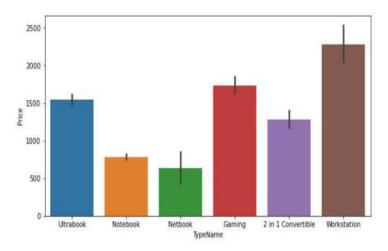


Figure: Data Visualization using bar plot

III. RESULTS AND DISCUSSION

This WebApp UI was created using the Streamlit framework. Custom web apps for machine learning and data science may be easily created and shared using the open-source Python package Streamlit. Results with backend code are displayed in the figures below.

```
import streamlit as st
import pickle
Import numpy as mp

s import the model
pipe = pickle.lead(open('pipe.okl', 'rb'))

df = pickle.lead(open('df.pkl', 'rb'))

st.title("Laptop Predictor")

st.type of Laptop

type = st.selectbox('Brand', df['Company'].unique())

st.type of Laptop

type = st.selectbox('Type', df['TypeName'].unique())

st.type of Laptop

type = st.selectbox('Type', df['TypeName'].unique())

st.type of Laptop

type = st.selectbox('RAM(in SB)', [2, 4, 6, 8, 12, 16, 24, 32, 64])

st.type of Laptop

st.type of Laptop

st.selectbox('RAM(in SB)', [2, 4, 6, 8, 12, 16, 24, 32, 64])

st.type of Laptop

st.selectbox('RAM(in SB)', [2, 4, 6, 8, 12, 16, 24, 32, 64])

st.type of Laptop

st.selectbox('Touchscreen', ['No', 'Yea'])

st.type of Laptop

st.selectbox('Iouchscreen', ['No', 'Yea'])

st.type of Laptop

st.type of Laptop

st.selectbox('Iouchscreen', ['No', 'Yea'])

st.type of Laptop

st.selectbox('Iouchscreen', ['No', 'Yea'])

st.type of Laptop

st.type of Laptop

st.selectbox('Iouchscreen', ['No', 'Yea'])

st.type of Laptop

st.type of La
```

Figure: Integrating ML model with Web Application

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com

1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

The predicted price of Laptop is: 48229

IV. CONCLUSION

It is simple for students to predict anything through the use of machine learning and the Decision Tree algorithm, especially when choosing the laptop specs that are most desirable for them in order to suit their needs and take into account their purchasing power. Because the laptop specs from the outcomes of the machine learning application have offered the most desirable specifications with their costs of laptops, students no longer need to search through numerous sources to discover the laptop specifications that they need to satisfy their needs.

ACKNOWLEDGEMENTS

The Our sincere thanks to our guide Dr. M.V.Vijay Saradhi for his guidance. Also, we are grateful to our project coordinator Mr. Prem Kumar and Thank Ful to Dr. M.V. Vijay Saradhi, Head of the Department of Computer Science And Engineering, ACE Engineering College for his support and precious time.

V. REFERENCES

- [1] Sorrower MS. A literature survey on algorithms for multi-label learning. Oregon State University, Corvallis. 2010 Dec;18.
- [2] Pandey M, Sharma VK. A decision tree algorithm pertaining to the student performance analysis and prediction. International Journal of Computer Applications. 2013 Jan 1;61(13).
- [3] Priyama A, Abhijeeta RG, Ratheeb A, Srivastava S. Comparative analysis of decision tree classification algorithms. International Journal of Current Engineering and Technology. 2013 Jun;3(2):334-7
- [4] Ho, T. K. (1995, August). Random decision forests. In Document analysis and recognition, 1995., proceedings of the third international conference on (Vol. 1, pp. 278-282).
- [5] Weka 3 Data Mining with Open-Source Machine Learning Software in Java. (n.d.), Retrieved from:

International Research Journal of Modernization in Engineering Technology and Science (Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:04/Conference:01/December-2022 Impact Factor- 6.752 www.irjmets.com

1st National Conference on Applications of soft Computing Techniques in Engineering NCASCTE-2022 Organized by Department of Electrical & Electronics Engineering, ACE Engineering College, Hyderabad

- https://www.cs.waikato.ac.nz/ml/weka/. [August 04, 2018].
- [6] Noor, K., & Jan, S. (2017). Vehicle Price Prediction System using Machine Learning Techniques. International Journal of Computer Applications, 167(9), 27-31.
- [7] Pudaruth, S. (2014). Predicting the price of used cars using machine learning techniques. Int. J. Inf. Comput. Technol, 4(7), 753-764.
- [8] Listiani, M. (2009). Support vector regression analysis for price prediction in a car leasing application (Doctoral dissertation, Master thesis, TU Hamburg-Harburg).
- [9] Utku A, Hacer (Uke) Karacan, Yildiz O, Akcayol MA. Implementation of a New Recommendation System Based on Decision Tree Using Implicit Relevance Feedback. JSW. 2015 Dec.